By combining wavelet method with multi-grid ethod,.wavelet-Galerkin-multigrid method is constructed for wave equation simulation,.therefore the computational efficiency is greatly improved. A dynamically adaptive.wavelet collocation algorithm is designed for two-dimensional wave equation, it can.dynamically trace oscillation or oddness. For the inverse problem of wo-dimensional wave equation, the well log is introduced, thus a widely convergent Generalized.Pulse-Spectrum-Technique is constructed. The inversion process is stable, widely.convergent and costs less computational effort. The convergence analysis is given for the Landweber iteative method when the nonlinear operator and its right hand are all non-exact. The method is applied to the inverse problem of one-dimensional wave equation. Some preliminary results are given on the Pride theory for sound-electricityeffect.
本项目将开展一、二维波动方程正反演的小波多重网格方法研究。主要内容包括:波动方程正演的完全自适应小波方法的设计;小波.—多重网格方法的构造;波动方程反演的小波—多重网格—大范围收敛广义脉冲谱方法研究;上述方法均将完成相应的应用软件及数值实验,反演方法将完成收敛性分析。此项研究将填补空白,具有理论与应用的双重重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
奥希替尼治疗非小细胞肺癌患者的耐药机制研究进展
基于综合治理和水文模型的广西县域石漠化小流域区划研究
四川盆地东部垫江盐盆三叠系海相钾盐成钾有利区圈定:地球物理和地球化学方法综合应用
黄曲霉毒素B1检测与脱毒方法最新研究进展
粘弹介质中波动(Stokes)方程正-反演问题的研究
波动方程反演问题及其数值方法
地震勘探中弹性波方程正反演的有限元多重网格方法研究
固液双相介质弹性波方程正反演的小波方法与应用研究