Under the guidelines of national public safety and resource conservation, this project is proposed to solve the leakage problem of hazardous chemicals high- efficiently and safety, in order to reduce personal injury and property damage. The absorbents are being used at this stage have some shortcomings, such as low adsorption efficiency, poor cyclic utilization, weak safety, not environmental-friendly, and so on. To deal with these disadvantages, a series of intrinsic-adsorption, flame-retarded, and environment-friendly flexible polyurethane foam (FPUF) nanocomposites will be designed and prepared by functionalized biomass-derived polyols and hyperbranched-structure-decorated nanometer materials. Various castor oil-derived polyols will be synthesized with the properties of intrinsic-adsorption and flame retardancy. Meanwhile, the surfaces of graphene and metal organic frameworks (MOFs) will be modified by hyperbranched treatments and bionics techniques, to obtain anti-static function and enhanced adsorptive property. All as-synthesized compounds will be used to prepare fictionalized FPUF. The influence of different kinds of bio-polyols and modified nanometer materials on the preparation technics, mechanical properties, adsorption behaviors, and fire safety of FPUF will be studied, in order to reveal the structure-activity relationships between sorptive groups, nano units and nanocomposites. Based on above analysis, the mechanisms of adsorption and fire safety will be elaborated. This systematic study will provide the theoretical foundation and experiment evidence for preparing hazardous chemicals absorbents with properties of high-efficiency, safety, and environmentally friendly.
面向国家公共安全、资源节约的重大需求,解决危险化学品泄漏的快速、安全处理的问题,减少泄漏事故造成的人员伤害和财产损失。本项目针对现阶段吸附材料的吸附效率低、循环使用性差、安全性弱且缺乏环保性等缺陷,设计兼具高效快速吸附、阻燃和生物可降解功效的功能化多元醇,结合超支化修饰的纳米材料,制备本质吸附的安全环保型软质聚氨酯泡沫纳米复合材料。研究基于蓖麻油为基体制备的本质吸附阻燃生物质多元醇;结合石墨烯和MOFs材料的抗静电和空间吸附功效,运用超支化仿生技术对纳米材料进行表面修饰;分析生物质多元醇和超支化修饰的纳米材料对纳米复合材料的制备工艺以及机械、吸附、安全等性能的影响;揭示吸附单元、纳米单元与纳米复合材料的构效关系,阐明其吸附机制与火安全机理。通过本质吸附软质聚氨酯泡沫纳米复合材料的制备与性能、机理的系统研究,为进一步开发高效安全环保的危化品吸附材料奠定了理论依据和实验基础。
项目针对现阶段吸附材料的吸附效率低、循环使用性差、安全性弱且缺乏环保性等缺陷,设计兼具高效快速吸附、阻燃和生物可降解功效的功能化多元醇,结合功能修饰的纳米材料,制备本质吸附的安全环保型软质聚氨酯泡沫纳米复合材料。研究基于蓖麻油为基体制备的本质吸附阻燃生物质多元醇;结合MOFs材料的空间吸附功效,运用修饰技术对纳米材料进行表面修饰;分析生物质多元醇和超支化修饰的纳米材料对纳米复合材料的制备工艺以及机械、吸附、安全等性能的影响;揭示吸附单元、纳米单元与纳米复合材料的构效关系,阐明其吸附机制与火安全机理。研究结果表明,将二苯基氯化磷和3-氨基丙基三乙氧基硅烷(KH550)引入蓖麻油分子链中成功合成的改性蓖麻油(CPK)可以替代部分原始多元醇,制备得到兼具良好阻燃性能和吸附性能的软质聚氨酯泡沫材料;研究结果表明,将纳米尺度的SiO2颗粒负载在软质聚氨酯泡沫表面并对其进行修饰改性,能够提高吸附材料对有机污染物的吸附性能及油水分离性能,所制备得到的聚氨酯软质泡沫复合材料的火安全性得到提升;研究结果表明,将磁性功能化的MOF材料负载在软质聚氨酯泡沫表面能够提高其对水体中重金属污染物的吸附能力,并且所制备得到的聚氨酯泡沫材料与未经改性的纯样相比,其热释放参数和烟气释放参数均得到了明显的抑制;这归功于金属氧化物对CO的催化氧化作用,及其与片层纳米材料的物理屏障之间的协同效应。总之,本项目通过本质吸附软质聚氨酯泡沫纳米复合材料的制备与性能、机理的系统研究,为进一步开发高效安全环保的危化品吸附材料奠定了理论依据和实验基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
面向云工作流安全的任务调度方法
聚氨酯泡沫吸附储存汽油的吸附机理及其实验研究
氧化石墨烯/聚氨酯泡沫基活性复合材料高效吸附放射性核素的机理研究
碳纳米管/沥青基泡沫炭复合材料结构设计及其吸附机理
多孔磁性纳米材料的构筑及其响应行为对吸附效率的作用机制研究