Oxonium-doped polycyclic aromatic hydrocarbons have exhibited a promising application prospect, but the related research work is just beginning and lack of a systematic in-depth investigation both in theory and application by far. Traditional pathways for the synthesis of oxonium-doped polycyclic aromatic hydrocarbons often require a multi-step process with harsh reaction conditions, limiting product type. In this project, taking advantage of the carbonyl as an incorporated directing group, the C–H activation/cyclization of aromatic aldehydes/ketones with alkynes is proposed to give rise to the pyrylium skeleton, affording various oxonium-doped polycyclic aromatic hydrocarbons in one step. The synthesis of pyrylium salts by transition-metal catalyzed C–H activation process has not been described yet. The project proposed herein is going to develop highly efficient catalytic systems, and further expand reaction type, which will provide highly efficient, highly selective and atomically economical pathways to oxonium-doped polycyclic aromatic hydrocarbons. Considering that both aromatic aldehydes/ketones and alkynes are widespread and derived easily, a large library of structurally diverse oxonium-doped polycyclic aromatic hydrocarbons can be built rapidly and concisely, which will provide a great opportunity for the development of new organic functional materials. Meanwhile, through the chemical basis developed herein, the novel conjugated skeletons with distinct structural features will be further developed and their applications in organic functional materials will be explored.
氧鎓掺杂的多环芳烃展现出重要的应用前景,但相关研究工作却刚刚起步,无论是在理论上还是在实际应用方面均缺乏系统深入的研究。传统方法合成氧鎓掺杂的多环芳烃一般需要多步骤反应,且反应条件较为苛刻,产物类型局限性大,远不能满足产物的结构多样性的需求。本项目拟利用羰基作为并入性导向基团,通过(稠)芳香醛、酮与炔或苯炔之间的C–H键活化/环化反应构建吡喃鎓骨架,从而一步构筑氧鎓掺杂的多环芳烃骨架。利用过渡金属催化的碳氢键活化策略来构筑吡喃鎓骨架迄今还未见报道。本项目拟发展高效催化系统,深入拓展反应类型,为氧鎓掺杂的多环芳烃骨架的构筑提供高效、高选择性、原子经济性合成途径。由于(稠)芳香醛、酮和炔广泛存在且易于衍生,因此通过该策略可高通量构建具有结构多样性的氧鎓掺杂的多环芳烃库,进而为新材料的开发提供重要的契机。同时,利用这些化学基础开发新颖的富有鲜明结构特征的共轭骨架,开发它们在有机功能材料方面的应用
氧鎓掺杂的多环芳烃在有机功能材料领域具有重要的应用前景。其传统方法合成方法一般需要多步骤反应,且反应条件较为苛刻,产物类型局限性大,远不能满足产物结构多样性的需求。本项目主要以羰基等含氧官能团作为并入性导向基团,发展了一系列(稠)芳香醛、酮与炔烃之间的C–H键活化/环化反应,为氧鎓掺杂的多环芳烃骨架的构筑提供了高效、高选择性的合成方法。我们发展了自由基化学与导向C–H键活化相结合的策略,为多类传统方法难以合成的全碳及氧杂多环稠合骨架的高效构建提供了一种新的合成策略。此外,我们还提出了原位活化三组分环化策略,用于区域选择性构筑阳离子氮杂螺烯;发展了Heck型机制的级联氧化C−H环化反应,为杂环并多苯结构的高效构筑提供了新的方法。同时,深入研究了氧鎓掺杂的多环芳烃分子结构与光物理特性之间的构效关系,初步研究了它们在近红外染料、分子探针和生物标记等领域的应用潜力,为新型有机功能材料的开发提供了重要化学基础。共发表SCI论文10篇,包括Nat. Commun.(1篇)、, Angew. Chem. Int. Ed.(3篇)、Adv. Funct. Mater.(1篇)、ACS Catal.(1篇)、Chem. Sci.(3篇)、Chem. Commun.(1篇),申请中国发明专利1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
基于MODIS-NDVI数据的植被碳汇空间格局研究——以石羊河流域为例
纳米材料介导下污泥厌氧消化系统高效降解多环芳烃的机制
氧二硅基线性稠环芳烃的合成及应用研究
噻吩掺杂稠环芳烃分子的合成及研究
基于多咪唑(鎓)和咪唑(鎓)环番的超分子自组装新体系