As an important physical quantity in physics, orbital angular momentum has given a rapid rise to new developments in nonlinear optics, quantum optics, atom optics, and astronomy since its original recognition by Allen et al. in 1992. Unlike spin angular momentum, orbital angular momentum is associated with helical phase fronts, which can, in principle, take infinite available states that are orthogonal with each other. In the interdisciplinary research areas between physics and optical communications, the project builds up a connection between orbital angular momentum and optical communications. Similar to some other degrees of freedom like wavelength, time slot, and polarization, orbital angular momentum also offers a new optical degree of freedom which can be used as the carrier of data information. Scientific researches are carried out in the project on the basic theories and key technologies of information manipulation using orbital angular momentum. First, basic theories and characteristics of orbital angular momentum-based information manipulation are explored, such as the basic rule of orbital angular momentum preservation during free-space propagation, orthogonality of orbital angular momentum, mirror-image effect on reversing the charge sign of orbital angular momentum, etc. Second, several key technologies of information manipulation are investigated both in theories and experiments, including the information multiplexing/demultiplexing, information exchange, and information multicasting. Finally, in order to improve the performance and scalability of information manipulation, a novel configuration, providing full-field (i.e., phase and intensity) spatial light modulation, is constructed. The research works of information manipulation using orbital angular momentum as a new degree of freedom, provide new opportunities and approaches in optical communications, which can potentially promote the rapid development of high-speed large-capacity optical communication networks.
作为物理学一个重要物理量,轨道角动量自1992年被Allen等人证实后迅速推动了非线性光学、量子光学、原子光学和天文学等多个学科的新发展。与自旋角动量不同,轨道角动量与螺旋形相位波前联系在一起,理论上可取值无穷且彼此正交。本项目在物理学和光通信学科交叉领域,将轨道角动量引入到光通信中,与波长、时隙和偏振等自由度类似,将轨道角动量视为一个新自由度并作为数据信息载体,开展利用轨道角动量进行信息操控的基础理论和关键技术研究。首先,探索轨道角动量信息操控的基础理论和基本特性,包括轨道角动量传播不变基本规律、正交特性和反号镜像特性等;其次,理论和实验研究轨道角动量信息复用/解复用、信息交换和信息广播等信息操控的关键技术;最后,构建新型相位和光强全场空间光调制装置以提高信息操控性能和扩展性。该研究在轨道角动量这一新自由度上操控信息,这为光通信提供了一条新途径并可对高速大容量光通信网的发展产生推动作用。
本项目在物理学和光通信学科交叉领域,将轨道角动量引入光通信,开展了轨道角动量信息操控的基础理论和关键技术研究,具体包括机理特性、信息复用/解复用、信息交换、信息广播和全场空间光调制五方面研究。..1、轨道角动量信息操控的基础理论、新机理和新特性研究.研究了角谱传播理论、正交特性、镜像特性、信息格式透明特性、大气扰动特性等。..2、理论和实验研究了轨道角动量“信息复用/解复用”.将高级调制格式、偏振复用和轨道角动量复用等多维度融合,实验实现了自由空间435 bit/s/Hz超高光谱效率,1.036 Pbit/s超高通信容量。拓展研究了小数阶轨道角动量复用通信及多种新型轨道角动量光纤设计及应用。..3、理论和实验研究了轨道角动量“信息交换”.提出并实验研究了光纤轨道角动量前向和后向信息交换及可重构轨道角动量模式和空间光交换。..4、理论和实验研究了轨道角动量“信息广播”.实验实现了1到34路轨道角动量信息广播;研究了纯相位元件产生多达100个信道轨道角动量光束;实验实现了功率可控轨道角动量广播和贝塞尔模式广播;研究了V天线超表面轨道角动量广播;实验实现了电介质超表面轨道角动量广播;实验实现了多维融合1到1100超大信道数信息广播;实验实现了自适应光学补偿大气湍流的轨道角动量广播。..5、新型相位和光强全场空间光调制的理论和装置研究.提出新型相位和光强全场空间光调制方法和装置,实现幅度和相位独立任意调控,实验产生了多路轨道角动量光束、拉盖尔高斯光束、贝塞尔光束及任意特殊光束。..轨道角动量信息操控开发了空间维度资源,有望推动高速大容量光通信发展。研究成果获教育部自然科学一等奖。发表SCI收录论文28篇(Scientific Reports 8篇、Optics Express 6篇、Optics Letters 11篇、Photonics Research 1篇、IEEE Journal of Quantum Electronics 1篇、IEEE Photonics Journal 1篇)。获邀英文综述文章2篇、英文书章节1篇。获邀国际会议特邀报告23次。组织 6 次轨道角动量专题论坛。录用国际会议论文47篇,其中Postdeadline Paper 2篇、Best Student Paper 2篇。申报国家发明专利4项,授权3项。
{{i.achievement_title}}
数据更新时间:2023-05-31
异质环境中西尼罗河病毒稳态问题解的存在唯一性
环境信息披露会影响分析师盈余预测吗?
国际比较视野下我国开放政府数据的现状、问题与对策
水文水力学模型及其在洪水风险分析中的应用
基于体素化图卷积网络的三维点云目标检测方法
利用激光束的轨道角动量态实现信息加载和解调的技术研究
信息物理融合系统(CPS)的基础理论和关键技术研究
利用光子轨道角动量实现高维量子体系以及其在量子信息中的应用研究
利用iHCO通信卫星实现导航通信的关键技术研究