微分算子自伴域的刻画及谱的离散性

基本信息
批准号:11361039
项目类别:地区科学基金项目
资助金额:45.00
负责人:王万义
学科分类:
依托单位:内蒙古师范大学
批准年份:2013
结题年份:2017
起止时间:2014-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:王桂霞,陶格斯,玉林,郭芳,许美珍,索建青,周立广,葛素琴
关键词:
离散性微分算子自伴域数值计算
结项摘要

We will discuss the spectrum analysis, inverse problem and asymptotic formulas of eigenvalues of discontinuous differential operators; The characterization of self-adjoint domain of differential operators on multi-intervals and products of differential expressions will be obtained in terms of real-parameter solutions. Discreteness of spectrum of self-adjoint and J-self-adjoint differential operators will be studied by means of the operator decomposition and quadratic comparison method. Also numerical calculations of Sturm-Liouville problems on multi-intervals will be investigated . Our purpose is to study the spectrum of differential operators in many ways such as the boundary conditions and the transmission conditions, the real-parameter solutions, the coefficients of differential expressions , the first class of numerical calculations etc.. Their research value is to thoroughly reveal the relationship between the spectrum of differential operators and the ways mentioned above. It's worth noting that it is widespread concern that differential operator be studied with of boundary conditions and transmission conditions and the real parameter solutions in international differential operators field.

本项目拟研究不连续微分算子的谱分析与反问题、特征值的渐进估计; 利用实参数解刻画多区间上微分算子的自伴域与微分算式乘积的自伴域; 利用算子分解的方法和二次型比较的方法来讨论自伴和J-自伴微分算子谱的离散性; 研究多区间上Sturm-Liouville问题中第一类数值计算等.其目标是从边界条件和转移条件、实参数解、微分算式的系数、第一类数值计算等多角度对微分算子的谱展开研究,其研究价值在于深入揭示微分算子的谱与边界条件和转移条件、实参数解、微分算式系数的关系. 利用边界条件和转移条件、实参数解来研究微分算子的谱是国际上本领域一个全新的和广泛关注的研究方向.

项目摘要

本项目研究了不连续微分算子的谱分析与反问题、特征值的渐进估计;利用微分算子谱理论及函数论的方法研究了特征值对边界的依赖性;利用转移条件定义新的内积,结合紧算子的谱理论以及逆算子的相关性质,研究了边界条件含有特征参数的高阶不连续微分算子特征函数系的完备性;利用实参数解刻画多区间上微分算子的自伴域与微分算式乘积的自伴域;利用算子分解的方法和二次型比较的方法讨论了系数中带有幂函数和指数函数的高阶对称微分算子谱的离散性;利用1-谱族特征值不等式研究了数值求解特征值的下标问题.达到了从边界条件和转移条件、实参数解、微分算式的系数、数值计算等多角度对微分算子的谱展开研究的目标.

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

DOI:10.13465/j.cnki.jvs.2020.09.026
发表时间:2020
2

钢筋混凝土带翼缘剪力墙破坏机理研究

钢筋混凝土带翼缘剪力墙破坏机理研究

DOI:10.15986/j.1006-7930.2017.06.014
发表时间:2017
3

双吸离心泵压力脉动特性数值模拟及试验研究

双吸离心泵压力脉动特性数值模拟及试验研究

DOI:10.13465/j.cnki.jvs.2020.19.016
发表时间:2020
4

掘进工作面局部通风风筒悬挂位置的数值模拟

掘进工作面局部通风风筒悬挂位置的数值模拟

DOI:
发表时间:2018
5

空气电晕放电发展过程的特征发射光谱分析与放电识别

空气电晕放电发展过程的特征发射光谱分析与放电识别

DOI:10.3964/j.issn.1000-0593(2022)09-2956-07
发表时间:2022

王万义的其他基金

批准号:10661008
批准年份:2006
资助金额:22.00
项目类别:地区科学基金项目
批准号:10961019
批准年份:2009
资助金额:18.00
项目类别:地区科学基金项目

相似国自然基金

1

微分算子自共轭域的实谱参数解刻画及谱分析

批准号:10901119
批准年份:2009
负责人:王爱平
学科分类:A0207
资助金额:16.00
项目类别:青年科学基金项目
2

微分方程的解对微分算子自共轭域和谱的离散性的影响

批准号:11401325
批准年份:2014
负责人:郝晓玲
学科分类:A0301
资助金额:23.00
项目类别:青年科学基金项目
3

微分算子谱的离散性研究

批准号:11161030
批准年份:2011
负责人:孙炯
学科分类:A0301
资助金额:46.00
项目类别:地区科学基金项目
4

算子矩阵谱的自伴扰动及其应用

批准号:11901323
批准年份:2019
负责人:秀峰
学科分类:A0207
资助金额:23.00
项目类别:青年科学基金项目