右端不连续复值微分方程的动力学行为及其应用研究

基本信息
批准号:11601143
项目类别:青年科学基金项目
资助金额:19.00
负责人:王增赟
学科分类:
依托单位:湖南第一师范学院
批准年份:2016
结题年份:2019
起止时间:2017-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:郭佳,成夏炎
关键词:
动力学行为不连续复值微分方程复值神经网络非光滑分析微分包含
结项摘要

Complex-valued differential equation with discontinuous right-handed sides has wide applications in many fields, such as rotating fluid, images processing and information security. In this project, we will construct the system of Filippov complex-valued differential inclusion for discontinuous complex-valued differential equation. Combined with non-smooth analysis theory, set-valued analysis, differential inclusion and non-smooth critical point theory, we will investigate the dynamic behavior for complex-valued differential equation, including the initial value problem and some basic properties, such as existence and uniqueness, different kinds of stability, convergence behavior (convergence in finite time) for equilibrium (periodic solution) . We will further study the stability theory of complex-valued differential inclusion, and apply these theories and methods to study different kinds of mathematical models in neural networks and complex networks, which described by complex-valued differential equation with discontinuous right-hand side. This research not only enriches and develops some basic theory of discontinuous differential equation, but also provides effective method and theoretical basis to solve many practical problems with discontinuous character.

右端不连续复值微分方程在流体力学、图像处理以及信息科学等领域有着广泛的应用. 本项目拟构建不连续复值微分方程所对应的微分包含系统,结合集值映射理论、微分包含理论、非光滑临界点理论等现代数学工具, 研究不连续复值微分方程的动力学行为, 主要包括初值问题和解的基本性质、平衡点(周期解)的存在唯一性、稳定性和收敛性(有限时间收敛性)等动力学行为. 完善和发展复值微分包含的稳定性理论, 研究神经网络和复杂网络同步领域中与右端不连续复值微分方程相关的模型. 本项目的开展, 将进一步丰富和发展不连续微分方程的基本理论, 同时为分析和解决众多受不连续因素影响的实际问题提供有效方法和理论依据.

项目摘要

右端不连续复值微分方程在流体力学、图像处理以及信息科学等领域有着广泛的应用. 我们构建了不连续复值微分方程所对应的微分包含系统,利用集值映射理论、微分包含理论、非光滑临界点理论研究不连续复值微分方程的动力学行为, 主要包括解的存在性和延拓性、平衡点(周期解)的存在唯一性、稳定性和收敛性(有限时间收敛性)等动力学行为. 完善和发展了复值微分包含的稳定性理论, 改进了复值微分包含的不动点定理, 研究不连续复值神经网络平衡点、周期解的存在性唯一性以及稳定性和稳定化问题.设计了切换控制器实现不连续复值复杂网络领域的同步.我们的研究成果进一步丰富和发展了不连续微分方程的基本理论, 同时为分析和解决众多受不连续因素影响的实际问题提供有效方法和理论依据.

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
3

硬件木马:关键问题研究进展及新动向

硬件木马:关键问题研究进展及新动向

DOI:
发表时间:2018
4

基于SSVEP 直接脑控机器人方向和速度研究

基于SSVEP 直接脑控机器人方向和速度研究

DOI:10.16383/j.aas.2016.c150880
发表时间:2016
5

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015

王增赟的其他基金

相似国自然基金

1

右端不连续泛函微分方程的复杂动力学行为及其应用

批准号:11501221
批准年份:2015
负责人:汪东树
学科分类:A0301
资助金额:18.00
项目类别:青年科学基金项目
2

右端不连续微分方程的定性理论及其应用研究

批准号:10771055
批准年份:2007
负责人:黄立宏
学科分类:A0301
资助金额:26.00
项目类别:面上项目
3

右端不连续时滞微分方程的多稳定性及其应用研究

批准号:11701007
批准年份:2017
负责人:段炼
学科分类:A0301
资助金额:23.00
项目类别:青年科学基金项目
4

右端不连续系统动力学特性研究

批准号:60774074
批准年份:2007
负责人:陈天平
学科分类:F0304
资助金额:28.00
项目类别:面上项目