Flexible robotic manipulators incorporate some merits of lower arm cost, better energy efficiency, higher operation speed, and improved mobility. These merits well motivate the use of flexible manipulators in space. However, the flexible manipulator system is subjected to the unknown external disturbance, which would lead to the deformation or vibration of the flexible link, and result in an offset from the target position. Since the excessive vibration would lead to premature fatigue failure, the control of flexible robotic manipulators is well motivated to improve the performance of the system. In this project, the constrained problem is investigated for a flexible manipulator with external disturbances, based on an active boundary control method. The advanced control strategies are proposed to drive the manipulator to the desired set-point, simultaneously suppress the vibrations of the flexible link. A novel boundary control law is also developed to ensure that the vibration output remains in a constrained space. Adaption laws are developed for handling parametric uncertainties and disturbance observers are proposed to deal with the effects of external disturbances. Lyapunov’s Direct Method is adopted to analysis the stability of the closed-loop systems. Extensive simulations are provided to illustrate the performance of the control system. The theoretical results of this project will provide a new design idea for the research of flexible manipulator in the engineering.
柔性机械臂由于有质量轻、造价低、精度高、灵活度高、操作空间大等优点被广泛的应用于空间站任务中。然而由于外部扰动的影响以及其自身的柔性特性,柔性机械臂在运动过程中的弹性形变以及自身扭曲等将导致端点产生轨迹偏差以及高频振动等问题。此外,机械臂自身弹性变形过大会引起其弹性振动,过激的振动甚至会导致柔性结构的断裂。本项目以空间柔性机械臂系统作为研究对象,拟设计一种主动的边界控制策略,从而抑制机械臂振动并达到轨迹跟踪的控制目的。此外,本项目拟设计一种新型的控制器以保证其振动输出约束在安全的范围内,将有效的防止因机械振动过大而导致的柔性连杆断裂现象。针对太空中的未知扰动与系统的未知参数,设计扰动观测器和自适边界控制应算法提高系统性能。本项目将采用李亚普诺夫方法分析系统稳定性,并在仿真与实验平台进行验证,为实际工程中柔性机械臂的研究提供新的理论依据。
柔性机械臂由于有质量轻、造价低、精度高、灵活度高、操作空间大等优点被广泛的应用于空间站任务中。本项目以空间柔性机械臂系统作为研究对象,设计了一种主动的边界控制策略,从而抑制机械臂振动并达到轨迹跟踪的控制目的。针对未知扰动,设计一种分布式扰动观测器;针对系统的未知参数,设计了自适边界控制应算法提高系统性能。针对输出约束,设计了一种新型的基于积分Barrier李雅普诺夫函数的控制器以保证其振动输出约束在安全的范围内。本项目采用李亚普诺夫方法分析系统稳定性,并在仿真与实验平台进行验证,为实际工程中柔性机械臂的研究提供新的理论依据。经过本项目的资助,申请人在国际知名杂志上发表标注本项目基金号的SCI论文8篇(第一作者7篇),并有2篇论文入选ESI“高被引论文”。此外,申请人还发表标注本项目基金号的EI期刊论文1篇以及EI国际会议论文8篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
N连杆柔性机械臂PDE建模及自适应边界控制理论研究
物理约束条件下柔性机械臂的自适应协同边界控制
空间柔性机械臂振动控制和精密定位的研究
空间大型机械臂柔性体动力学建模与非线性控制方法研究