The rope-driven hyper redundant degree-of-freedom deep-water manipulator with a buoyancy-driven method is the main object of the project, which is for the flexible load-operations in the underwater confined space. With the hydraulic buoyancy control technology and the rope-driven hyper redundant degree-of-freedom manipulator technology, the project controls the buoyancy distribution of the manipulator to reduce the limitation of self-gravity on the operation performances and improve the load capability and control performances. Refer to the special environment of the deep water and the structure of the rope-driven hyper redundant degree-of-freedom manipulator, the project aims to solve the problems as follows: dynamic modelling of the manipulator with influences of many coupled factors, fast synchronous control of distribute hydraulic buoyancy and nonlinear compensation of deep-sea hydraulic buoyancy control system. Combining theoretical analysis, numerical simulation and experimental research, the project conducts the following researches: solution for the complex dynamic model of the hyper redundant degree-of-freedom manipulator with influences of many hydrodynamic factors, design of distribute hydraulic buoyancy control system with a pump-control bladder method, and nonlinear compensation of the deep-water hydraulic buoyancy control system with a pump-control bladder method. With these researches, it is aimed to build a 3000-meter deep-water flexible manipulator prototype with one meter arm span, five joints, 10 degree-of-freedom. This project has a certain theoretical and engineering significance for mastering the design method of underwater flexible manipulator, improving the technological level of deep sea operation tools, pushing the ocean exploration and development process, promoting national economic development and strengthening national defense construction in China etc.
面向空间受限环境下深水作业要求,本项目提出基于浮力驱动的绳驱超冗余度深水操作手研究,将液压浮力控制技术与绳驱超冗余度操作手技术相结合,通过主动控制操作手本体的浮力分布,以提高水下柔性操作手的负载能力和控制特性。针对深海特殊环境及绳驱超冗余度操作手结构特点,本项目拟突破多耦合因素下操作手动力学准确建模、分布式浮力控制回路的快速同步控制及深海液压浮力控制系统的非线性补偿等难点问题,通过理论分析、数值模拟和实验研究相结合的方法,研究多水动力学因素下超冗余度动力学特性解析、分布式泵控浮囊型液压浮力控制系统设计、深海浮囊型液压浮力控制的非线性补偿,进而研制臂展1米、5关节、10自由度的3000米级深水柔性操作手。本项目研究对于我国掌握柔性水下操作手设计方法、提升我国深海作业工具技术水平、推动我国海洋探测与开发进程、促进国民经济发展和加强国防建设等都具有一定的理论和现实意义。
面向空间受限环境下深水作业要求,针对现有臂架式水下操作手的柔性差、质量和转动惯量大等问题,本项目提出基于浮力驱动的绳驱超冗余度深水操作手研究,拟在研究多水动力学因素下超冗余度动力学特性解析、分布式泵控浮囊型液压浮力控制系统设计、深海浮囊型液压浮力控制的非线性补偿等内容的基础上,研制臂展1米、5关节、10自由度的3000米级深水柔性操作手。本项目完成了臂展1米、5关节、10自由度的水下绳驱超冗余度机械手的研制,完成其水下动力学特性解析与运动控制算法设计;设计了浮力驱动系统,研究了浮力驱动对绳驱动力的影响过程,发现浮力驱动可以显著减小绳驱功率。由于众多因素的限制,本项目未能对3000米下环境作业性能开展测试。本项目的开展,对于研发新型水下柔性作业操作手、提高我国水下作业装备技术水平、推动我国海洋勘探与开发进程等都具有一定的科学意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
滚动直线导轨副静刚度试验装置设计
多源数据驱动CNN-GRU模型的公交客流量分类预测
绳驱超冗余多臂空间机器人动力学及协调变刚度控制研究
基于介电弹性体驱动的MRI相容操作手系统模型及控制方法研究
多源激励下超深立井多绳提升绳弦碰撞行为及主动控制研究
深水环境下金刚石串珠绳切割钢基材料切削及磨损特性研究