一类微分半变分不等式问题研究

基本信息
批准号:11426119
项目类别:数学天元基金项目
资助金额:3.00
负责人:汪星
学科分类:
依托单位:江西财经大学
批准年份:2014
结题年份:2015
起止时间:2015-01-01 - 2015-12-31
项目状态: 已结题
项目参与者:李翠
关键词:
逼近算法解的存在性收敛性微分半变分不等式
结项摘要

In 2008, Pang and Stewart introduced and studied a class of differential variational inequalities in finite-dimensional spaces. The research has important theoretical value and application prospect. many researchers at home and abroad have made achievements in studying the theory, algorithm and applications of differential variational inequality in recent years. This project will study the theory and algorithm of a class of differential hemivariational inequalities. We will establish sufficient conditions for the existence of the solution of differential hemivariational inequalities by using nonlinear analysis, differential equation and optimization theory and methods. Then we establish an algorithm for the problem and show the analysis of convergence in a similar way to Euler time-stepping procedure and Tikhonov regularized time-stepping methods for differential variational inequalities. The results of this project not only enrich and develop the theory and algorithm of differential variational inequalities, but also has broad prospect of application in mechanics and engineering.

2008年,Pang和Stewart在有限维空间中引入并研究了一类微分变分不等式,这项研究具有重要的理论意义和应用前景。近年来,国内外有不少学者对一些微分变分不等式的理论、算法及应用进行了研究,获得了许多有价值的研究成果。本项目主要研究一类微分半变分不等式的理论和算法。利用非线性分析、微分方程和优化理论的方法和技巧,获得这类问题解存在的充分性条件。借鉴研究微分变分不等式的欧拉时步进程和Tikhonov正则时步算法,构造这类微分半变分不等式解的逼近算法,分析算法的收敛性。本项目的研究,不仅可以丰富和发展微分变分不等式的相关理论与算法,而且在力学、工程学等领域具有广泛的应用前景。

项目摘要

本项目的主要目的是引入并研究一类微分半变分不等式问题。利用非线性分析、微分方程和优化理论的方法和技巧,获得这类问题解存在的充分性条件。借鉴微分变分不等式已有的欧拉时步进程和Tikhonov正则时步算法,构造这类微分半变分不等式解的逼近算法,分析算法的收敛性。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
3

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

DOI:10.13465/j.cnki.jvs.2020.09.026
发表时间:2020
4

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

DOI:10.7606/j.issn.1000-7601.2022.03.25
发表时间:2022
5

针灸治疗胃食管反流病的研究进展

针灸治疗胃食管反流病的研究进展

DOI:
发表时间:2022

汪星的其他基金

相似国自然基金

1

H-半变分不等式及非凸约束问题

批准号:11426071
批准年份:2014
负责人:彭自嘉
学科分类:A0206
资助金额:3.00
项目类别:数学天元基金项目
2

求解随机半正定变分不等式问题的数值方法

批准号:11126066
批准年份:2011
负责人:孙菊贺
学科分类:A0405
资助金额:3.00
项目类别:数学天元基金项目
3

H-半变分不等式理论中的若干新问题

批准号:10971019
批准年份:2009
负责人:刘振海
学科分类:A0306
资助金额:26.00
项目类别:面上项目
4

半变分不等式的新问题及其在力学问题中的应用

批准号:11101069
批准年份:2011
负责人:肖义彬
学科分类:A0405
资助金额:24.00
项目类别:青年科学基金项目