量子不确定性关系、可联合测量以及隐藏非局域性研究

基本信息
批准号:11701128
项目类别:青年科学基金项目
资助金额:23.00
负责人:秦慧慧
学科分类:
依托单位:杭州电子科技大学
批准年份:2017
结题年份:2020
起止时间:2018-01-01 - 2020-12-31
项目状态: 已结题
项目参与者:史思红,崔美钰,常景美
关键词:
量子非局域性可联合测量隐变量模型量子不确定性关系量子隐藏非局域性
结项摘要

Quantum uncertainty and nonlocality are two most striking phenomena of quantum information theory. They play important roles in quantum information processing. Uncertainty relations, which is also called uncertainty princeple, is one of the most foundamental principle in Quantum Mechanics. It is helpful to uncover the essence lying deeper in Quantum Mechanics. The study of quantum nonlocality can lead to more precise and successful using on quantum information processing tasks. We are primarily aim to investigate the following two problems in this project. First we will inverstigate the quantum measurement error uncertainty relations for multi-observables. It is considered that the sufficient and necessary condition for the joint measurability of multi-obserbvables. Depending on this condition, we willl study an measurement error uncertainty relation. Second, we will inverstigate the nonlocality of some entangled states which admit LHV models. We willl try to construct the concise LHV models and investigate the nonlocality after operating a flip on these states. Then we will classificate these states into more elaborate categories according to the correlation which they have.

量子不确定性和非局域性是量子信息论里两个最引人注目的现象,在量子信息任务处理中有着重要的应用。量子不确定性关系即测不准原理,其研究有助于我们揭示量子世界背后更深刻的原理。量子非局域性关联的研究以及精细划分有助于不同量子态在量子信息任务处理中更精确、成功地应用。本项目主要研究量子测量逼近误差-干扰不确定性关系和量子非局域性两个问题: 一、研究多个可观测量可以联合测量的充分必要条件以及在可以联合测量意义下,多个可观测量的测量逼近误差-干扰不确定性关系的具体表达式;二、研究一类满足隐变量模型的量子纠缠态经过局部过滤算子作用后的非局域性关联或者满足的局域隐变量模型,并对这类量子态的非局域性关联进行更细致地划分。

项目摘要

本项目基于项目负责人博士期间的研究工作,对多个 qubit 可观测量的联合测量性进行了研究,得到了三个无偏可观测量可以联合测量的充分必要条件,且在该联合测量意义下得到三个可观测量的测不准关系——测量不确定性不等式,该不等式的下界只跟三个可观测量是否可以联合测量的充分必要条件相关。另外,我们得到一个任意多个可观测量可以联合测量的必要条件。对于三个不可联合测量的可观测量,我们得到了联合测量意义下的测量最佳逼近算子的解析式以及取得最佳逼近时的测量密度矩阵。我们另外研究了隐藏非局域性关联,我们将特殊的李代数算子作用在任意量子态上得到的测量平均值组合得到的不确定性关系,抽象出一个形似 CHSH 不等式的验证非局域关联的不等式,并且得到了相应的最大量子违反。最后项目负责人在博士后期间跟随合作导师完成了一项有关于量子系统哈密顿量的非对称性度量研究。该研究深刻刻画了量子系统产生对称破缺时与其对应的对称群基底——代数发生的变化相联系,并且描述了量子谐振子系统相较于经典谐振子系统的形变度。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
3

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
4

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
5

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

DOI:10.7606/j.issn.1000-7601.2022.03.25
发表时间:2022

秦慧慧的其他基金

相似国自然基金

1

量子纠缠的建立与纯化以及量子非局域性

批准号:10004009
批准年份:2000
负责人:段路明
学科分类:A2205
资助金额:16.00
项目类别:青年科学基金项目
2

多可观测量不确定关系及其在纠缠识别、相干度量与量子网络非局域性中的应用研究

批准号:11771011
批准年份:2017
负责人:贺衎
学科分类:A0207
资助金额:48.00
项目类别:面上项目
3

信息熵与量子非局域性

批准号:10404039
批准年份:2004
负责人:陈平形
学科分类:A2210
资助金额:21.00
项目类别:青年科学基金项目
4

基于非局域性的量子博弈研究

批准号:61502179
批准年份:2015
负责人:司徒浩臻
学科分类:F0214
资助金额:20.00
项目类别:青年科学基金项目