The main objective of this work is to propose the integrated design theory and method to build the accurate multi-domain unified model for performing the design, analysis, optimization, and performance evaluation of the feed drive systems in machine tool, aiming at developing high-speed/precision feed drive systems. A systematic research plan involving in three aspects is as follows. Firstly, the research work will be centered on the movable joint characterizing and accurate performance modeling, namely, to get an insight for the dynamic characteristics and system coupling of the ball screw mechanism and the linear rolling guide joint surface. Secondly, the free vibration characteristic of the time-varying rotor-screw feed drive system will be analysized to design some adaptive notch filters that are based on gain scheduling to compensate the torsion vibration of first two orders, so as to accurately model servo control system to realize high speed/precision CNC feed movement. Thirdly,the modeling and optimization which takes into account the interaction among mechanical device, electrical subsystem, control subsystem and heat transfer parts will be studied in detail,as a result, the special multi-domain model library for modeling feed system will be extended. The unified multi-domain simulation model of feed drive system can be constructed by calling the library. Furthermore, the multi-domain simulation-based optimization problem can be solved effectively by some efficient optimization algorithms based on response surface methods. The systematic research plan is put forward for this project, we have belief in breaking through the bottleneck problems to model and optimize the high-speed/precision feed drive systems, which consist of several subsystems such as mechanical, electrical,control and heat subsystems. In some sense, the project will effectively promote some theoretical improvements for the digital design of machine tools, and improve the independent innovation of the high-speed/precision feed drive systems for high-speed machining.
项目主要目标是提出基于多领域建模的高速高精进给系统匹配优化设计的相关理论与方法,为高速高精进给系统设计方案优化、性能仿真和验证评价建立理论基础。课题将从三个方面展开研究工作:(1)研究高速轻载滚珠丝杠副和直线滚动导轨等可动结合部力热耦合作用下的物理特性及其表征方法,支持进给系统机械领域的精确建模。(2)研究进给系统时变模态和运行稳定性条件,通过研究自适应陷波滤波补偿控制,支持控制领域的精确建模。(3)研究进给系统多领域建模、仿真、匹配和优化,实现进给系统多域性统一性能优化模型快速构建,实现基于响应面的系统参数匹配优化。项目针对高速加工进给系统多领域高精度建模及优化问题,提出了较为系统的研究思路,有希望攻克进给系统机、电、控、热等不同领域子系统集成设计中的关键性难题,形成我国高速加工进给系统自主创新设计技术,促进机床数字化设计技术发展,实现加工速度向高速阶段的跨越。
进给系统的速度和定位精度是数控机床的两项重要指标,直接关系到加工效率和产品的质量。由于进给伺服系统是集机械、电子、液压和控制于一体的复杂机电耦合系统,存在着机械惯性、电磁惯性和热惯性等,其性能不仅取决于机械结构的特性,同时受到控制及伺服系统的制约。本项目重点研究集设计、分析、优化和性能评价一体化的进给系统多领域统一建模理论和方法,支持高速高精进给伺服系统的研发。.围绕滚珠丝杠副和直线滚动导轨等可动结合部在多场强作用下的物理特性及其精确建模进行研究,分析了高速工况下的结合部物理参数、传动部件的结合部物理参数的识别及其耦合机理。基于Hertz接触理论,研究了预紧力、陀螺转矩的影响;研究了中空滚珠丝杠的热力学态特性,详细给出了进给系统各个热源及各表面对流散热系数的计算方法,研究了转速、冷却强度等因素对进给系统力热耦合分析的影响。.研究进给机构的时变扭转振动特性,通过自适应陷波滤波补偿控制,实现进给位移、速度和加速度的综合控制,使进给伺服驱动具有高响应、高精度和高稳定性。为了加大伺服系统的控制带宽,提高进给系统的稳定性,基于滑模控制理论建立了位置、速度、电流三闭环控制的交流永磁同步电机伺服控制系统,并针对滑模控制的抖振问题,设计了一种变增益滑模控制器。.研究了进给系统机、电、液、控、热等不同领域子系统多学科性能模型建模和优化技术,通过不同多领域库的扩展,实现进给系统多领域统一分析模型快速构建;研究了基于响应面的高效优化求解算法,求解多学科优化模型。在现有多领域建模与仿真平台MWorks上实现集成,开发了高速高精进给系统多领域统一建模及优化原型系统,为进给系统设计方案优化、性能仿真和验证评价提供数字化设计平台,为高速高精进给系统数字化设计提供支持。.课题基本按项目计划执行,取得了的一些成果,丰富了进给系统的设计理论,对高档数控机床数字化设计技术的发展起到了促进作用,基本达到了预期目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于多模态信息特征融合的犯罪预测算法研究
卫生系统韧性研究概况及其展望
基于涡流阻尼的高速直驱进给系统振动主动抑制方法研究
基于无序多图像的高可靠特征点匹配与最优化方法研究
基于LPV理论的高速滚珠丝杠进给系统运动及振动主动控制方法研究
基于板形动态控制的板带轧机系统多领域建模与协同仿真