One of the most important factors that constraint the developing of nuclear power is the potential threaten to public health by the leakage of nuclear fuel and wastes. Once the radioactive materials come to the living environments (eg. underwater), it is quite easy to be inhaled and ingested in the body of animals and absorbed in vegetables, finally to the human body which is difficult to excrete. .As reported, the low dose internal radiation may be harmful to the specific group of people, such as pregnant female, fetuses, child and so on, causing altered immune system, abnormal embryonic development, circulatory diseases, premature menopause in female animals, tumorigenesis and shortened lifespan. Hence, the study of low dose or low-dose-rate ionizing radiation induced bio-effects by Uranium235, which is the one of the major radiation sources from the nuclear fuels and wastes, is crucial for the estimation of potential public health crisis as developing of nuclear power. The radiation bio-effects researches are based on current biotechnologies – animal tests or cell culture in the petri dishes. However, the micro-environment of the living cells in these experiments are extremely different from the real living cells in the organs or body, which is quite difficult to derive the relevant results from 2D cultured experiments or animals to human body. .The developing of new biotechnology – Organ on a chip, can build the physiological process of a specific human organ in a microfluidic chip, by which it provides a research platform that can study the radiation bio-effects of an artificial human organ (eg. liver). All of the experiments are working under the microfluidic chips mimicking the living environments of body, thus not harming the human body. Hereby, we propose to build a liver chip to study the low dose radiation bio-effects by 235U. By introducing the interface of blood vessels and liver organ cells, we could mimick the physiological functions of a liver and the cell living microenvironments. With introducing the low dose radiation elements 235U in the chip, we could study the metabolizing dynamics of the artificial organs, damaging of living cells, adsorption and transport of the 235U ions, systematically studying the comprehensive radiation bio-effects after 235U inhaled/digested in the human liver. By developing a new method for the radiation bio-effects on the human organs, it is great helpful to rate the public health risk of developing nuclear power.
限制核电工业发展的重要因素之一是核废料处理等给人类生活环境造成的潜在威胁,其摄入人体后产生的低剂量辐射生物学效应研究是伴随核电开发的重要研究课题。而目前主要采用的二维细胞培养技术和动物实验均与人体的生理状况存在显著差异,这也给内照射引起的细胞生物效应及整体器官功能损伤等定量化研究带来了较大困难。本项目通过在体外构建器官芯片,模拟人体内肝脏器官的微环境,以铀235为内照射源,建立人体内照射生物效应研究的新方法。拟开展以下三个方面研究:①设计并构建肝脏-血管生物组织微环境,模拟肝脏器官的基本生理代谢功能;②开展核素铀在模拟器官组织中的细胞损伤研究,实现细胞及器官组织的原位在线观测;③检测器官组织界面的生理代谢功能损伤,通过核素在生物组织界面的吸附、迁移等现象,揭示核素铀235的低剂量内照射对细胞及器官组织产生的生物学效应及规律,最终实现基于器官芯片的细胞至组织尺度辐射效应的研究新方法。
限制核电工业发展的重要因素之一是核废料处理等给人类生活环境造成的潜在威胁,其摄入人体后产生的低剂量辐射生物学效应研究是伴随核电开发的重要研究课题。而目前主要采用的二维细胞培养技术和动物实验均与人体的生理状况存在显著差异,这也给内照射引起的细胞生物效应及整体器官功能损伤等定量化研究带来了较大困难。本项目通过在材料、方法、器件等方面的探索,探索和开发了单个细胞以及细胞共培养等在微流控芯片开发方面的工作,并利用核素进行了细胞辐照与其生物学效应研究,体现在以下几个方面:1.系统性研究器官芯片的制备与在低剂量辐射研究中的应用前景,并构建利用光调控的功能化微流控芯片,和建立了利用电阻抗谱进行单细胞尺度的无损检测芯片和方法,为未来进行细胞受辐照后的损伤检测奠定基础;2.研究了高弹性材料的微流控芯片,来模拟细胞共培养和对器官组织的动力机制和单细胞捕获;3.构建稳定表达DNA损伤标记物53BP1荧光探针的上皮细胞和肝脏(或其他组织)细胞,研究了低剂量辐照条件下,构建稳定表达DNA损伤标记物53BP1荧光探针的上皮细胞和肝脏(或其他组织)细胞,以及X射线和碳离子的辐照实验条件下L02细胞的稳定表达,最终实现铀金属离子在组织界面的吸附及对界面组织的损伤研究。4.培养了几位参与合作研究人员掌握了完整的芯片设计、界面修饰、细胞共生等研究方法。培养3名参与人员的生物芯片制备和使用操作,培养研究生(含联合培养)5人,发表国际期刊论文12篇,其中包含Nature Communications,JACS等顶级期刊论文,获得国家发明专利2项,其中1项获得国际PCT专利。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
用于辐射探测的纳米尺度抗辐射数字前端芯片设计方法研究
基于器官芯片技术的抗抑郁药心肌毒性评价新方法研究
基于肠-心多器官芯片的药物心肌毒性评价新方法研究
基于NO-cGMP-PKG信号通路对VSMC舒张的调节作用探索“按之则热气至”的靶器官效应机制