Debris mitigation is vital for high-peak-power laser systems since the impulsive debris can pollute and damage the optical components and diagnostic facilities. Until now, the most usual material used for debris shield is silica. But the expensive silica has some disadvantages including easy to broken, hard to assemble. Most notably, its self-phase modulation and self-focusing effect can make the whole system heavy-laden. Perfluoropolymer film is attractive and potential for debris mitigation due to its perfect properties such as low cost, low absorption, and high laser damage threshold. However, the film has a high reflectivity and the inert surface is difficult to achieve antireflection, which restrain the application for debris shield. In this project, we focus on the optical antireflection of fluorinated ethylene propylene (FEP) throughout combining oxygen plasma modification and SiO2 sol-gel coating techniques. The influence of oxygen plasma treatment condition on chemical structure and properties of the inert FEP surface will be investigated systematically. The mechanism of FEP surface modification induced by oxygen plasma will be revealed. The interaction mechanism of FEP surface and SiO2 sol-gel will be investigated thoroughly. The project will provide a new technique approach for debris mitigation in high-peak-power laser systems and is hopeful to expend the application of inert perfluoropolymer further.
高功率激光系统中的靶溅射物会对光学元件及诊断设备造成污染和损坏,需加以防护。一直以来,石英光学元件被广泛用于靶溅射防护,但昂贵的石英材料不仅易破损、难装校,其固有的自相位调制、自聚焦等先天不足,还对整个光路系统带来了额外负担。全氟聚合物薄膜以其低成本、低吸收、高激光抗损等特性,在靶溅射防护领域极具应用潜力,但却受限于反射率较高,而其惰性表面又难于增透。本项目以氟化乙丙共聚物(FEP)为切入点,结合氧等离子体表面修饰和SiO2溶胶-凝胶镀膜技术,实现FEP薄膜大面积增透。为了深入挖掘FEP在靶溅射防护领域的应用潜力,本项目将系统研究不同氧等离子体状态对FEP表面化学结构类型及分布特征的影响规律,揭示氧等离子体诱导FEP惰性表面改性的内在机制,并深入探究改性后FEP表面与SiO2溶胶-凝胶的相互作用机制。该项目为高功率激光靶溅射防护提供了全新的技术思路,并有望进一步拓展全氟聚合物的应用领域。
高功率激光系统中的靶溅射物会对光学元件及诊断设备造成污染和损坏,需加以防护。一直以来,石英光学元件被广泛用于靶溅射防护,但昂贵的石英材料不仅易破损、难装校,其固有的自相位调制、自聚焦等先天不足,还对整个光路系统带来了额外负担。全氟聚合物薄膜以其低成本、低吸收、高激光抗损等特性,在靶溅射防护领域极具应用潜力,但却受限于反射率较高,而其惰性表面又难于增透。本项目以氟化乙丙共聚物(FEP)为切入点,结合氧等离子体表面修饰和SiO2溶胶-凝胶镀膜技术,实现了FEP薄膜得大面积增透。为了深入挖掘FEP在靶溅射防护领域的应用潜力,本项目系统研究了不同氧等离子体状态对FEP表面化学结构类型及分布特征的影响规律,揭示了氧等离子体诱导FEP惰性表面改性的内在机制,并深入探究了改性后FEP表面与SiO2溶胶-凝胶的相互作用机制。该项目为高功率激光靶溅射防护提供了全新的技术思路,并有望进一步拓展全氟聚合物的应用领域。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
基于全模式全聚焦方法的裂纹超声成像定量检测
感应不均匀介质的琼斯矩阵
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
PMMA改性氟聚合物的合成及其介电、储电性能研究
交联型全氟阻醇质子交换膜制备及性能研究
桥基可诱导短氟烷基侧链定向的含氟聚硅氧烷结构与表面性能关系研究
含氟有机多孔聚合物的制备、性能及相关应用