Currently, the world is facing a very serious energy and environmental crisis. Exploiting new alternative energy sources (e.g. hydrogen energy) has become an urgent problem, where developing highly efficient and economical catalyst can play a crucial role in solving it. Owing to possessing the similar feature to hydrogenase as well as the high electrical conductivity and stability, transition-metal phosphides might exhibit an intrinsically higher catalytic activity for hydrogen evolution reaction (HER), and have been considered as the outstanding candidate for new-generation HER catalyst after the well-known MoS2. In the past two years, considerable attention has been focused on the metal phosphides for achieving the new excellent HER catalyst. Now, some progress in experiment has been made, however, the correlative theoretical effort is rather scarce, which severely hinders the development of metal-phosphides-based HER catalyst, due to the insufficiency in understanding the intrinsic catalytic mechanism. To overcome this bottleneck, in this project we will mainly focus on the earth-rich transition-metal (e.g. Fe, Ni, Co, Mo, Cu and W) phosphides to explore the structural profile at the atomic level, elucidate the catalytic mechanism and understand the HER reaction process by means of the first-principles computation. Additionally, we propose two effective strategies to further improve the HER catalytic activity by constructing binuclear/multinuclear or carbon-covering transition-metal phosphides. All these investigations can provide the new idea and reliable theoretical information for experimentally synthesizing the inexpensive and highly efficient HER catalyst, which can be advantageous for achieving a cost reduction by avoiding the unnecessary experimental consumption from traditional trial-and-error process for optimization, and promoting the development of hydrogen energy.
当前,人们正面临着严峻的能源和环境危机。新能源(如氢能)的开发已成为亟待解决的重大问题,而廉价高效催化剂的研发是解决该问题的关键。由于具有与氢化酶类似的特征以及优异的稳定性和导电性等优势,过渡金属磷化物被认为是继MoS2之后新一代析氢催化剂的优秀候选物,已成为近期的研究热点。尽管其实验研究已取得一定进展,但相关理论工作却相当匮乏,这使人们对其催化本质缺乏明确认识,很大程度地阻碍了研发进程。为了突破该瓶颈,本项目将以储量丰富的过渡金属(如Fe、Ni、Co、Mo、Cu和W)的磷化物体系为研究对象,通过理论模拟在原子水平上探索体系的微观结构,揭示催化机理及反应过程;并通过构建双/多核金属磷化物以及碳层包裹两种策略去进一步改善此类体系的析氢催化性能,为实验上合成廉价高效的析氢催化剂提供全新思路和科学的理论指导。该项目研究有助于节约成本,避免大量盲目的实验消耗,推进氢能的研发。
当前,人们正面临着严峻的能源和环境危机。新能源(如氢能)的开发已成为亟待解决的重大问题,而廉价高效催化剂的研发是解决该问题的关键。尽管实验研究已取得一定进展,但相关理论工作却相对匮乏,这使人们对体系催化本质缺乏明确认识,很大程度地阻碍了研发进程。为了突破该瓶颈,本项目以具有一定实验基础且地球储量丰富的过渡金属的磷化物为研究对象,从原子水平上探索其微观结构,选取系列典型晶面,确定具有析氢催化活性的活化位;深入揭示了体系具有催化活性的本质原因,为复杂实验现象提供清晰的理论图像。在此基础上,我们还在理论上进一步改善磷基催化剂的析氢催化性能(如杂原子掺杂、引入缺陷、施加应力和碳层包裹等手段),为实验上合成性能更优的析氢催化剂提供新思路和科学实际的理论指导。除了磷化物,我们还设计了系列二维碳基析氢催化剂,提出通过构建具有超原子特性的活性中心、嵌入过渡金属团簇、引入张力环等方法去有效改善了二维碳基材料的析氢催化性能,为相关催化剂的设计提供了全新思路。进一步,我们还对相关过渡金属硼化物和氧化物等体系的析氢/析氧催化性能及催化机理展开了深入研究,为相应的实验工作(尤其是大电流密度下的廉价高效催化剂设计)提供了有价值的理论信息。此外,我们还研究了由低维纳米材料(如BN/SiC/B/Ge)和超原子构建的新型纳米复合结构, 发现这些复合体系能表现出优异的电学、磁学和非线性光学性质,相关研究能为基于无机低维纳米体系的新型功能纳米器件、磁性材料和非线性光学材料设计提供新的思路和有价值的理论线索。在该基金的支持下,共毕业博士生3人,硕士生8人,在国际知名学术杂志上共发表SCI论文25篇,其中以通讯作者/共同一作发表论文24篇。总之,该项目的研究能为实验上合成相关廉价高效的电催化剂提供全新思路和科学的理论指导,有助于节约成本,避免大量盲目的实验消耗,推进氢能的研发。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
高活性含磷镍基合金的制备、结构及析氢电催化机理研究
铁族金属磷基纳米材料制备及催化析氢研究
光催化制氢中贵金属/非贵金属Mo基W基化合物复合产氢助催化剂研究
利用多酸设计和制备新型高效非贵金属电解水制氢催化剂