The development of information technology has promoted tremendous changes in the logistics industry. The rapid acquisition and exchange of massive information poses new challenges for the study of efficient combinatorial optimization models and algorithms. The complex mesh structure, discrete data and large data volume make the modern logistics industry inherently Suitable as a scenario for artificial intelligence applications. This special workshop offers courses: "Combination Optimization Models and Algorithms in Modern Logistics" and "Machine learning Solution Methods for Combined Optimization Problems". During the workshop, visits to the Ali Park, practical application reports and research frontier lectures were also arranged. This special workshop combines the outstanding frontier experts and scholars in the academic circle and the industry; adheres to the tenet of “from practical to practical” in operations research, and has strong characteristics of the times; exploring new innovations in addition to the traditional research path of operations research. The workshop will provide a foundation for graduate students and young scholars engaged in portfolio optimization and related fields, broaden their horizons, and improve their learning platforms and learning opportunities.
信息技术的发展促进了物流行业的巨大变革,海量信息的快速获取和交换为高效的组合优化模型与算法研究提出了新的挑战,而复杂网状结构、离散数据和大数据量的特性使得现代物流业天生就适合作为人工智能应用的场景。本专题讲习班开设课程:《现代物流中的组合优化模型与算法》和《组合优化问题的机器学习求解方法》。在讲习班期间还安排参观阿里园区、实践应用报告和研究前沿讲座。本项目结合学界和业界的优秀前沿专家学者;坚持运筹学“从实际中来,到实际中去”的宗旨,具有强烈的时代特色;在坚持运筹学的传统研究道路之外,探寻新的创新之路。此次讲习班可以为从事组合优化及相关领域的研究生及年轻学者提供夯实基础、开拓视野、提高研究水平的学习平台和学习机会。
{{i.achievement_title}}
数据更新时间:2023-05-31
面向云工作流安全的任务调度方法
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
一种改进的多目标正余弦优化算法
一种加权距离连续K中心选址问题求解方法
分数阶微分方程奇异系统边值问题正解的存在性
面向有限拼载与嵌套满足约束的出厂物流组合装载问题的模型与优化算法研究
两类投资组合优化问题的模型与算法研究
组合优化中困难问题的有效算法
混合智能优化算法模型研究及其在组合优化中的应用