There is an ongoing grand transition to low-carbon energy worldwide. Critical materials such as rare earth elements, cobalt become imperative to those emerging technologies, which has attracted global attention and actions on securing the stable supply of critical materials. In this context, it becomes increasingly important to explore the critical material-energy technology nexus and to identify its life cycle management strategies. This project thus aims to examine China’s power battery technology transition and its corresponding critical materials as a case study, and three research stages are included: (1) The anthropogenic material cycle framework will be constructed to quantify its stocks and flows along this cycle for each critical material, with a further exploration on the role of technology innovation and promotion in each life cycle stage in determining its corresponding material stocks and flows. Accordingly, a novel Critical Material and Technology Nexus (CMTN) Model can be developed; (2) This model is proposed to be applied to quantify the material flow and stocks of those five critical materials along material cycle and to explore its interaction patterns with power battery technical transition in China annually from 1990 to 2015; (3) According to various technical roadmaps (2017-2030), this project then aims to develop several scenarios with the identification of the potential combination of various strategies related to material use along the entire life cycle. For each scenario, the future material flows and stocks will be estimated with CMTN model for each critical material along its life cycle and their potential supply risks will also be analyzed. The overall project can help to improve our understanding of the material-energy nexus,to form effective policies for the government to promote the simultaneous management of critical material and emerging energy technologies, and to enhance the global competitiveness for manufacturers related to energy technology in China.
在新一轮能源革命中,关键金属如稀土、钴等对新兴能源技术的发展至关重要,各发达国家对关键金属的争夺愈演愈烈。因此,亟需将金属和能源相耦合进行系统研究。本项目以我国动力电池技术及其关键金属为对象,开展三部分研究:(1)构建金属全生命周期核算框架,分析其在开采、生产、使用至废弃过程中物质流动特征,并探究能源技术对物质流的驱动机制,建立金属-能源耦合模型;(2)根据我国动力电池技术的历史变化(1990-2016),利用耦合模型去量化每类关键金属的流量和存量变化,分析该技术演变对物质流动的影响;(3)根据我国动力电池中长期规划(2017-2030),构建生命周期管理策略情景,模拟各情景下金属资源流动的演变趋势,评估关键金属供给风险,探究缓解路径和策略选择。本项目不仅能为我国金属-能源的协同管理提供科学基础和决策支持,还能进一步保障国家能源安全,提升我国能源技术的国际竞争力。
本项目聚焦“双碳”目标驱动下的能源低碳转型与关键金属循环的关联耦合机理,系统开展了三方面研究工作:(1)创新地提出能源-金属耦合概念,阐明了金属全生命周期流动循环与能源技术低碳转型之间的相互关联渠道,系统地构建了“双碳”目标下的能源低碳转型与关键金属循环耦合评估模型;(2)量化了“双碳”目标下稀土、锂、铜、钨等关键金属全生命周期物质流量和存量变化,模拟了关键金属元素与能源低碳技术演变的协同演变关系,评估了能源-金属耦合的资源、经济及环境影响;(3)交叉生命周期工程技术与资源系统管理策略,构建了全生命周期视角下关键金属流动及能源技术协同管理举措集,模拟评估了不同温控及策略情景下我国关键金属资源安全演进情况及其缓解路径,为我国关键金属资源安全保障提供了决策支持。项目取得的主要成果包括发表论文11篇,其中SCI/SSCI论文6篇,涵盖Nature Communications、Global Environmental Change, Fundamental Research, One Earth等高水平期刊;组织Resource Conservation Recycling.等学术期刊专刊共计3次;项目主持人获得中国科协青年人才托举工程计划等项目资助。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
黄河流域水资源利用时空演变特征及驱动要素
硬件木马:关键问题研究进展及新动向
大数据驱动的服务运营系统性优化与管理——以新能源汽车为例
供需波动下考虑生命周期与调剂的血液联合库存管理策略研究——以血荒为例
医养结合背景下养老护理分级系统的构建与管理策略研究——以山东省为例
新能源汽车动力电池梯级利用的运营模式与策略研究