Subjected to the complexity of power system structure and model, present power system hierarchical control generally adopts the Automatic Generation Control (AGC) and the Automatic Voltage Control (AVC) to regulate frequency and voltage respectively, based on the assumption that the dynamic of active power/ frequency and that of reactive power/voltage are independent of each other. The adverse impact on the system and even the system security issue, caused by the two closed-loop control systems acting on a real power system, has drawn much attention. To break the hierarchical control structure that has been used in practice for a long time and design the area controller that can regulate frequency and voltage simultaneously, the primary task is to build a suitable hierarchical control model. Aiming at this bottleneck problem, the applicants, based on the effort of more than ten years, have innovatively established the hierarchical structural model which can describe the essential differential-algebraic feature of complex power systems. Furthermore, the reduced model (which can describe the main dynamic feature and lower the complexity and nonlinearity) of the hierarchical structural model are obtained through our recent research. The obtained reduced model provides the possibility for designing the area controller to regulate frequency and voltage simultaneously. Therefore, we propose this application and attempt to build a new framework of power system hierarchical control which can coordinate the frequency control and the voltage control, to design a coordinated and optimized area controller (consisting of both AGC and AVC) which can take the economy and the security of power systems into account. The work would make fundamental and control principle contribution to enhancing the effects of power system hierarchical control and constructing the strong and smart grid.
受限于系统结构与模型的复杂,电力系统递阶控制普遍基于有功/频率与无功/电压解耦的假设,并采用AGC 和AVC分别控制。两个独立的闭环系统同时作用于一个实际的电力系统带来的负面影响(甚至可能引发系统安全问题),已开始引起重视。而要扬弃有功与无功之间的解耦假设,设计出能协调控制有功与无功的区域控制器,首要问题是建立适用的递阶控制模型。针对这一瓶颈问题,申请人经10多年努力,开创性地建立了能描述复杂电力系统本质(微分-代数特征)的递阶结构化模型;近年进一步建立了其(既完整描述主要动态特性,又大大降低复杂度与非线性的)简化模型,为协调控制有功与无功提供了模型基础。为此提出本申请,尝试建立能协调处理有功/频率与无功/电压控制问题的电力系统递阶控制新框架;尝试设计集AGC与AVC于一身、兼顾经济和安全的区域优化协调控制器,为电力控制科学与工程发展开展基础性、前瞻性、控制原理方法上的探索。
受限于系统结构与模型的复杂,电力系统递阶控制普遍基于有功/频率与无功/电压解耦的假设,并采用AGC 和AVC分别控制。两个独立的闭环系统同时作用于一个实际的电力系统带来的负面影响(甚至可能引发系统安全问题),已开始引起重视。本项目尝试建立能协调处理有功/频率与无功/电压控制问题的电力系统递阶控制新框架,为电力控制科学与工程发展开展基础性、前瞻性、控制原理方法上的探索。本项目取得如下研究成果:1、系统给出了建立含控制器的元件完整结构化模型(微分–代数方程形式)及其简化模型的方法。不同于传统的线性化等效或主导极点简化,研究给出的简化模型,在保证微分–代数系统性质、保留隐动态的前提下,大大降低微分方程阶数与复杂性,为实时控制提供合适的区域级(机电暂态)模型,具有广阔的应用前景;2、建立含各种线性、非线性控制器在内的各种电力系统元件的完整与简化模型,包括单端接地元件发电机、SVC、STATCOM,双端不接地元件TCSC与双端接地元件HVDC;3、给出能综合(协调)处理有功/频率和无功/电压控制问题的电力系统动态递阶控制基本框架,提出集AGC与AVC功能于一身,用一个控制器同时控制所辖区域的有功/频率和无功/电压的设计新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
多源数据驱动CNN-GRU模型的公交客流量分类预测
基于结构滤波器的伺服系统谐振抑制
基于公司行业结构的哈尔滨跨区域联系网络分析
有源配电网的有功与无功协调控制研究
自律分散的电压/无功协调控制机理与方法研究
电力系统电压/无功分级分布实时优化控制
区域电力系统智能协调最优变目标电压控制理论研究