Exploring and studying solid electrolyte material which has high conductivity has become the key of development fuel cell from 100 to 400 ℃. In this project, high-temperature resistance polymer is introduced to SnP2O7-based intermediate temperature electrolyte material due to its characteristics of high-temperature resistance, high strength and high modulus. A novel series of SnP2O7-based/high-temperature resistance polymer composite electrolytes material which have higher densities and conductivities will be first built with different suitable synthesis process parameters such as the ratios of electrolytes vs. polymers control and selection of defoamers etc. The structure of the composite electrolytes material will be characterized by means of X-ray diffraction, thermal analysis and Scanning electron microscope etc. The conduction behaviors of the composite electrolytes material will be systematically investigated by using various electrochemical methods at intermediate temperatures. Fuel cells using the composite electrolytes as electrolytes will be constructed and the cell performances at intermediate temperatures will also be explored. The structure-activity relationship of synthesis process-structure characterization-intermediate temperature electrical properties will be preliminary built for SnP2O7-based/high-temperature resistance polymer composite electrolytes material. Through the above systematic investigations, it is expected to find some new, excellent intermediate temperature ionic conductors of the SnP2O7-based/high-temperature resistance polymer composite electrolytes material and provide important theory basis and application reference for intermediate temperature fuel cell.
探索和研究在中温(100–400 ℃)下具有高电导率的固体电解质材料已成为开发中温燃料电池的关键所在。本项目利用耐高温聚合物具有耐高温、高强度、高模量的特性,将其引入到SnP2O7基中温电解质材料;拟通过探索适宜的合成工艺参数如电解质与聚合物成份配比控制、消泡剂的选择等,构筑一系列新型致密、高电导率的焦磷酸锡基/耐高温聚合物复合电解质材料。采用X射线衍射、热分析、扫描电镜等多种实验表征手段对复合电解质材料的结构进行表征;采用多种电化学方法系统地研究复合电解质材料的中温导电性能,并组装燃料电池,研究其中温电池性能。初步建立焦磷酸锡基/耐高温聚合物复合电解质材料的合成工艺-结构表征-中温电性能构效关系。通过以上系统研究,可望发现一些优良的中温离子导电焦磷酸锡基/耐高温聚合物复合电解质材料,并为中温燃料电池提供重要理论及应用参考依据。
探索和研究在中温下具有高电导率的固体电解质材料已成为开发中温燃料电池的关键所在。本项目将耐高温聚合物引入到SnP2O7基中温电解质材料中,通过探索适宜的合成工艺,构筑一系列新型致密、高电导率的复合电解质材料。.本项目完成了两个新型系列PTFE/Sn1-xGaxP2O7及Sn1-xTaxP2O7/PTFE复合电解质的合成及相应中温电性能的研究。以中温电性能最好的Sn0.95Mg0.05P2O7电解质材料与多种聚合物(PMMA、PTFE、SEBS)复合,在国际上均为首次合成。并探索了Sn0.9Ga0.1P2O7电解质材料与聚苯醚复合,制得Sn0.9Ga0.1P2O7/聚苯醚复合电解质材料。在焦磷酸盐复合电解质方面还以Zn2+、Al3+离子在Ti4+位置掺杂,制备TiP2O7-TiO2复合陶瓷并研究了中温电性能。.通过探索发现,系列PTFE/Sn1-xGaxP2O7均匀且致密,Ga3+掺杂量对复合电解质电导率有着显著的影响: (x = 0.20) (x = 0.15) (x = 0.10) (x = 0.05)。以PTFE/Sn1-xGaxP2O7作为电解质的H2/O2燃料电池性能测试表明,在150 ℃下,x = 0.05和x = 0.10样品最大输出功率密度分别为63 mWcm-2、36.3 mWcm-2。适量磷酸改性的PTFE与Sn0.95Mg0.05P2O7复合具有稳定优良的中温电性能,热分析表明样品稳定性良好,在140 ℃下的电导率达到最大值为:4.4×10-2 S•cm-1。组装H2/O2燃料电池性能测试表明140 ℃下,最大输出功率密度为48.9 mWcm-2。.本课题组在进行原定计划确定的研究内容的同时,还进行了无机/无机复合电解质的研究。以SrCe0.9Yb0.1O3-a与无机盐复合,并深入研究了掺杂离子、掺杂量、合成方法、无机盐种类及进一步形成铈酸锶-锆酸锶对复合电解质中温离子导电性能和燃料电池的影响。.以上成果大大拓展了相关有机/无机、无机/无机复合电解质材料的筛选和研究范围。为中温下工作的电解质复合材料体系的设计与制备提供基础理论支撑,为这类材料在燃料电池、气体传感器等电化学装置的应用提供重要依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
三级硅基填料的构筑及其对牙科复合树脂性能的影响
甘肃省粗颗粒盐渍土易溶盐含量、电导率与粒径的相关性分析
新型聚合物电解质基固态锂-空气电池复合空气电极构筑研究
耐高温介电材料的微观结构构筑及功能化研究
聚合物改性水泥基复合材料的韧化及介电性能研究
耐高温、高导热聚合物复合绝缘材料的原位聚合制备和介电、热学性能研究