This project is concerned with wireless communication network-based heading control and fault detection for unmanned surface vehicles (USVs), and the data reconstruction approach is proposed to reduce the heading angle deviation and improve the fault detection performance.USVs have found their applications in scientific characterization, oil and pollution clean-up, and military operations. It is of great importance to control the heading angle of USVs accurately and detect the occurrence of fault quickly. However, such problems have not been paid full attention in the literature.For USVs considering data drift, active packet dropout and active delay, this project will study the communication problem under the framework of control. For the heading control of USVs which are equipped with single rudder and double rudders, data drift is taken into account for the first time to establish the system model, the data reconstruction approach, the active packet dropout approach and the active delay approach are proposed to improve the precision of heading control; the full order fault detection filter-based and the observer-based fault detection schemes are proposed, and the active packet dropout and the active delay are considered separately to establish the quantitative relationship between the active packet dropout probability and the existence of the observer-based residual generator; to convert the nonlinear matrix inequalities which are introduced in fault detection filter design into a convex problem, new bounding inequalities will be proposed. This project is the perfect combination of the networked control theory and the industrial applications.
本项目研究基于无线通信网络的无人水面舰艇航向控制及故障检测,并通过数据重构技术减小航向偏差、改善故障检测性能。无人水面舰艇广泛应用于科学试验、海洋污染物清理及军事活动等。如何对无人水面舰艇进行精确的航向控制并快速准确地检测系统故障具有重要意义,而现有文献对该问题的研究处于起步阶段。本项目针对存在数据漂移,且考虑主动丢包及主动时延的情况,在控制系统的框架中研究通信问题。针对具有单舵及双舵的无人水面舰艇航向控制,首次考虑数据漂移的影响并建立系统模型,首次提出数据重构、主动丢包及主动时延方法以改善航向控制精度;提出基于全阶故障检测滤波器及基于观测器的故障检测方案,并在把主动丢包及主动时延分开考虑的基础上建立主动丢包概率与基于观测器的残差生成器存在性之间的定量关系;为了将故障检测滤波器设计阶段出现的非线性矩阵不等式转化为凸问题,提出新的放大不等式。该项研究是网络控制理论与工业应用相结合的有益探索。
本项目研究基于无线通信网络的无人水面舰艇航向控制及故障检测,并通过数据重构技术减小航向偏差、改善故障检测性能。无人水面舰艇广泛应用于科学试验、海洋污染物清理及军事活动等。如何对无人水面舰艇进行精确的航向控制并快速准确地检测系统故障具有重要意义,而现有文献对该问题的研究处于起步阶段。本项目针对存在数据漂移,且考虑主动丢包及主动时延的情况,在控制系统的框架中研究通信问题。针对无人水面舰艇航向控制过程,考虑数据漂移的影响并建立系统模型,提出数据重构、主动丢包及主动时延方法以改善航向控制精度;提出基于全阶故障检测滤波器及基于观测器的故障检测方案,并在把主动丢包及主动时延分开考虑的基础上建立主动丢包概率与系统稳定性及基于观测器的残差生成器存在性之间的定量关系;为了将故障检测滤波器设计阶段出现的非线性矩阵不等式转化为凸问题,提出了新的放大不等式。该项研究是网络控制理论与工业应用相结合的有益探索。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
内点最大化与冗余点控制的小型无人机遥感图像配准
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于分形维数和支持向量机的串联电弧故障诊断方法
自适应事件触发的网络化无人水面舰艇动力定位与故障检测
基于多模型混杂控制系统理论的无人机故障容错控制研究
基于无线网络的随机滤波理论研究及在油井故障检测中的应用
基于观测器的鲁棒控制与故障检测