For preparation of advanced polymer composites, Aramid fiber has faced the insufficiency of interlayer shear strength, compression strength and UV resistance. In order to enhance these three kinds of properties, the theory and technology of four aspects will be systematically studied in this project based on chemical structure and preparation of Aramid fiber III:a. structure design and synthesis of heterocyclic aramid macromolecules (chemical structure of monomer, chain sequential structure of macromolecule, macromolecular crosslinking and new crosslinking method); b. regulation of macromolecular aggregation structure(decomplexation of HCl in protonated benzimidazole units, crystallization and orientation, dynamics of weakening skin-core structure) ; c. composition effect with fluorinated carbon nanotubes or graphene (multi-interaction, enhancement of interactionin the axial and radial directions); d. construction of surface structure and property (activating surface with direct fluorination and inhibiting the scission of aramid bond, principle and approach of improving UV-resistance by complexing-enhanced fluorescence in the surface). This study will grasp the principle and method of controlling of macromolecular structure, crosslinking of macromolecular chain, weakening skin-core structure and improving UV-resistance; reveal the aggregation evolution of heteroaromatic aramid fiber in the process of heat-treatment; explain the mechanism of the inhibition of amide bond scission in fluorination and the principle of catalytic selective fluorination; clarify the physical and chemical synergetic effect of fluorided nano carbon-material for enhancement. Thus, the relationship between the multi-level structure and properties of heteroaromatic Aramid fiber will be established. On the premise of maintaining or improving the mechanical properties of heterocyclic aramid fiber, the project will provide principle and feasible integrated technology solutions for the synergistic enhancement of these three properties, and build a theoretical and technical basis for preparing a new generation of high-performance Aramid fiber to better meet the national demand.
针对芳纶存在复合性能差、压缩强度低和耐紫外线性能不佳三大共性问题,本项目以芳纶III分子链结构和制备技术为基础,系统性研究:杂环芳纶分子链结构设计与合成(单体化学/链序列/交联结构)、聚集态/形态结构调控(HCl解络合/结晶和取向/皮芯结构弱化)、氟化碳纳米管/石墨烯增强效应(多重相互作用/轴向和径向增强)和表面结构与性质构造(直接氟化表面活化/抑制酰胺键断裂/表面络合荧光增强耐紫外性能)。掌握大分子链结构设计、交联、皮芯结构弱化和提高耐紫外性能原理和方法;揭示杂环芳纶原丝热处理中聚集态结构的演变规律;明晰抑制氟化酰胺键断裂的机理及催化选择性氟化调控原理;阐明氟化碳纳米材料增强的物理化学协同效应。从而建立杂环芳纶多层次结构与性能的关系和调控方法;在保持或提高力学性能前提下,为整体性解决芳纶三大问题提供理论指导和技术方案,为制备满足国家重大新需求的下一代高性能杂环芳纶奠定理论和技术基础。
杂环芳纶具有高强度、高模量和耐高温、高绝缘、质量轻、韧性好等优异性能,使其制备的先进复合材料具有耐冲击、耐疲劳性、质轻和透波等特性,其可更好满足国家重大需求。但作为先进复合材料增强纤维,杂环芳纶目前仍面临复合性能差、压缩强度低和耐紫外线性能不佳三大难以解决的“古老”问题,限制了其实际应用。本项目以国家重大需求为导向,以解决杂环芳纶本身存在的三大共性问题为核心,并依据研究计划和研究目标,开展的主要研究内容:①杂环芳纶大分子链化学结构设计与制备研究;②协同增强杂环芳纶力学性能新原理和新途径研究;③杂环芳纶表面化学改性及复合材料界面结构设计与性能研究;④皮芯层结构设计与调控及其复合材料界面性能研究;⑤功能性杂环芳纶和氟化纳米填料的设计与制备。通过上述研究,掌握了大分子链结构设计与控制的原理和方法;发展了提高压缩强度的多技术途径及原理,制备的杂环芳纶压缩强度提高了50%~114%;明晰了抑制氟化酰胺键断裂的机理及催化选择性氟化反应原理,并建立了衍生接枝调控杂环芳纶表面结构新方法,提出了增强杂环芳纶皮芯结构和皮层抗撕裂提高界面剪切强度的新思想,系统性认识了纤维表面改性和增强其皮芯层连接力与其复合材料界面性能及界面失效的关联性,制备的杂环芳纶复合材料界面剪切强度最大提高了131%;发现了通过表面络合配位增强荧光性能增强杂环芳纶耐紫外性能的新途径。从而整体上建立了杂环芳纶多层次结构与性能的关系和调控方法,为更好地满足国家重大需求奠定了研究基础。其中部分研究成果获得了航天单位用户使用报告;与企业达成项目专利转让及产业化合同(公示期)。同时,在国内外学术期刊上,共发表标注基金号的期刊学术论文91篇(目标:50篇),其中第一标注61篇;授权国家发明专利11项(目标:4-6项);发表会议论文近40篇。培养毕业研究生和在读研究生18名(目标:8-12名),博士后2名。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
杂环芳纶溶液中预有序结构调控及其纤维制备研究
芳纶基含硅有机/无机杂化材料的制备及应用研究
基于激光拉曼技术的芳纶/环氧复合材料界面微观结构表征及粘结机理研究
微细切削芳纶纤维复合材料表面创成机理研究