The high-valued and functional application of lignocellulose is a key scientific problem to be solved in the field of forestry engineering. In this project, lignocelluloses which is derived from forest residues is introduced into photocatalytic hydrogels to solve the problems of low catalytic efficiency, low mechanical strength and poor viscoelasticity, and to realize the recycling of photocatalytic materials in the practical application process. The preparation of TEMPO oxidized nanocellulose (TOCN) is studied, and used it as a reinforcing agent of the polyacrylamide (PAM) framework to controllable synthesis composite structured hydrogel with photocatalysis performance. The viscoelasticity and mechanical strength of hydrogel is improved by introducing TOCN. The TOCN was also used as a biomass carbon source to prepare carbon quantum dots (CQDs), which is combined with photocatalyst BiOBr to increase the catalytic activity of BiOBr. Furthermore, TOCN is utilized as carrier material for CQDs/BiOBr complex to improve dispersibility of the particles in the PAM gel matrix. Thus, the photocatalytic properties of hydrogels are enhanced to achieve multiple separation and recycling. The effects of synthetic condition on the properties of the hydrogel are analyzed, the gelation mechanism of photocatalysis hydrogels with composite network is studied, and the synergistic effect of TOCN and catalyst complex in hydrogel is resolved. The theoretical support for the controllable preparation of hydrogels with excellent mechanical and catalytic properties is provided.
木质纤维素的高值化和功能化应用是当今林业工程领域亟待解决的关键科学问题。本项目以林业剩余物为原料,将木质纤维素引入到光催化水凝胶中,解决其在实际应用中存在的催化效率不高、机械强度偏低且粘弹性较差等问题,同时实现光催化材料的循环利用。研究拟通过TEMPO氧化法制得纳米纤维素(TOCN),将其作为聚丙烯酰胺凝胶骨架的增强相,调控构建具有复合网络结构的光催化水凝胶,以提高凝胶基体的粘弹性和力学强度;并将TOCN作为生物质碳源制备碳量子点(CQDs),使其与光催化剂BiOBr复合进而提高催化活性。再以TOCN作为CQDs/BiOBr复合光催化剂的纳米载体,改善其在凝胶基体中的分散性,实现光催化材料的循环利用。通过分析合成条件对水凝胶性能的影响规律,旨在阐明光催化水凝胶复合网络的形成机理,解析TOCN和复合催化剂在凝胶基体中的协同作用,为兼具优良机械性能和催化活性水凝胶的可控制备提供理论支持。
本项目以林业剩余物为原料,将木质纤维素引入到光催化水凝胶中,解决其在实际应用中存在的催化效率不高、机械强度偏低且粘弹性较差等问题,同时实现光催化材料的循环利用。研究通过TEMPO氧化法制得纳米纤维素(TOCN),将其作为聚丙烯酰胺凝胶骨架的增强相,调控构建具有复合网络结构的光催化水凝胶,以提高凝胶基体的粘弹性和力学强度;并将TOCN作为碳源制备碳量子点(CQDs),并将优化后的Bi-N-CQDs与光催化剂BiOBr复合。再以TOCN作为Bi-N-CQDs/BiOBr的纳米载体,改善其在凝胶基体中的分散性,实现光催化材料的循环利用。具体结果如下:以巴尔沙木枝丫材为原料,制备晶型结构不同的纤维素纤维;用64%的硫酸及TEMPO氧化法得到的TOCN的羧基含量在1.00-1.74 mmol/g范围内,平均粒径为30-284nm;以TOCN为原料,采用水热法制备CQDs,讨论了水热时间、pH、稀释倍数对CQDs荧光强度的影响。进一步将尿素、Bi(NO3)3•5H2O掺杂CQDs,得到具有窄发射峰,高发射光强的Bi-N-CQDs;优化Bi-N-CQDs与BiOBr的复合比例。在太阳光辐照下,当pH=7时复合光催化剂在40分钟后对RhB的去除率为99.3%,且pH对降解效果影响显著;接下来,将TOCN引入PAM水凝胶,得到的凝胶材料具有大孔结构、密度低(~1.42g/cm3)、含水量高(~82.3%)、光学透明度高。负载长径比大的TOCN以及提高TOCN的含量有利于增强TOCN/PAM水凝胶的机械性能;最后,将Bi-N-CQDs/BiOBr负载于TOCN上,引入凝胶基体。分散良好的Bi-N-CQDs/BiOBr-TOCN可以作为交联剂与PAM形成氢键,赋予水凝胶良好的力学强度和优越的吸附性能。引入5Bi-N-CQDs/BiOBr-TOCN后,水凝胶的断裂应力接近0.042MPa,其对RhB的吸附量达到0.09mg/g。与TOCN/PAM水凝胶相比,复合水凝胶的拉伸强度提高了1.50倍,吸附量提高了2.09倍。此外,RhB的去除有赖于水凝胶的吸附与光催化降解的协同作用,其中,光解占主要作用,吸附占次要作用。在pH = 7,可见光照射300分钟对RhB的降解率可达到96.2%。h+和•O2-是降解RhB的主要活性物质。复合水凝胶循环5次后,对RhB的去除效率在80%左右。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
内点最大化与冗余点控制的小型无人机遥感图像配准
中国参与全球价值链的环境效应分析
纳米纤维素增强双网络导电水凝胶的调控合成及机理研究
木质素基水凝胶负载纳米颗粒对稻田镉的吸附消减机理
木质素基纳米粒子–水凝胶药物载体的构筑及智能释放行为调控
酶解木质素基全生物质水凝胶的结构调控与凝胶化机理研究