Our goal in this project is to study nonlinear approximation for the classes of multivariate smooth functions on the unit sphere S^d, on the ball B^d and on the simplex T^d. We concern ourself with the best m-term approximation problems. The asymptotic estimates of m-term approximation and corresponding optimal algorithm would be given. The research would push the development of approximation theory in the relative fields, and it also has applications in numerical analysis, computational complexity, nonlinear functional analysis, statistical estimation, image and signal processing.
本项目研究球面S^d、球体B^d 和单形T^d 等紧集上的多元光滑函数类的非线性逼近问题,主要考虑最佳m-项逼近的特征,给出m-项逼近渐近阶的估计,以及找出实现此逼近阶的渐近最优算法。预期所得结果不但对多元函数逼近理论的相关方向带来推动,而且对数值分析, 计算复杂性,非线性泛函分析,统计估计,图像信号处理等应用学科也有借鉴作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究
基于抚育间伐效应的红松人工林枝条密度模型
简化的滤波器查找表与神经网络联合预失真方法
ENHANCED NITRITATION THROUGH LONG TERM HYDROXYLAMINE ADDITION: INSIGHT INTO AMMONIUM OXIDATION ACTIVITY AND MICROBIAL COMMUNITY
函数在球面上的调和展开及逼近
函数在球面上的调和展开及逼近
加权球调和分析与逼近
非线性逼近理论