时间分数阶偏微分方程高效数值方法及其解的性质研究

基本信息
批准号:11701103
项目类别:青年科学基金项目
资助金额:22.00
负责人:汪志波
学科分类:
依托单位:广东工业大学
批准年份:2017
结题年份:2020
起止时间:2018-01-01 - 2020-12-31
项目状态: 已结题
项目参与者:徐海燕,姚忠胜,张会琴
关键词:
猝灭问题有限差分方法收敛性与稳定性紧格式
结项摘要

In recent years, fractional partial differential equations have been widely applied in many fields, such as signal processing, earthquake analysis, quantum economic, et al. The fractional derivative is defined through a singular integral, the analytic expression of the solution is often difficult to obtain, so it becomes very important to study efficient numerical algorithms and properties of the solution for fractional partial differential equations. The first goal of this project is to construct efficient finite difference algorithms for time fractional partial differential equations. The high order approximations are used to discretize the time fractional derivative, for spatial direction, the weighted average compact operator and the high order exponential scheme are adopted. Another aspect to be studied in this project is the quenching problem for fractional models. The Fourier transform method and the characteristic function theory will be used to estimate the quenching time for fractional models, this project will also design efficient numerical algorithms to show this phenomenon. Problems studied in this project always have nonsymmetric structure, it is the selling point of the project to use the energy method combined with the matrix decomposition technique to ensure the stability and convergence of the scheme.

近年来,分数阶偏微分方程已被广泛应用于信号处理、地震分析和量子经济等领域。由于分数阶导数是一个带有奇性核的积分,分数阶偏微分方程解的解析表达式往往难以求得,因此,探求分数阶偏微分方程的高效数值算法及其解的性质是当前十分重要的科学任务。本项目拟对时间分数阶偏微分方程构建高效有限差分算法,时间分数阶导数主要采用申请者及其他学者提出的高阶离散格式,空间方向主要利用加权平均紧格式、指数型格式来构造高阶格式;本项目关注的另一方面是分数阶模型的猝灭问题,拟借助Fourier变换、特征函数理论等技巧估计出分数阶模型猝灭发生的时刻,并设计高效的数值算法来展示这一现象。本项目所研究的问题大都具有非对称结构,采用能量法与矩阵分解技巧相结合来保证格式的稳定性和收敛性是本项目的特色。

项目摘要

近年来,分数阶微分方程的数值求解因其广泛的应用背景而备受关注。本项目主要研究时间分数阶偏微分方程的高效数值方法。通过项目组的努力,基本完成了预定的研究目标,发表了15篇学术论文,其中SCI收录12篇,含高被引论文1篇,培养了1名博士后,先后培养了8名硕士研究生。主要针对时间分数阶扩散方程、时间分数阶积分微分方程、时间分数阶电报方程、非线性时间分数阶波方程、时间分数阶KDV-Burgers方程、以及非线性分数阶方程的quenching现象等问题进行了研究,通过降阶、加权平均、非均匀网格离散、差分法、正交样条配置等方法或技术设计算法,通过能量法、Fourier方法证明算法的收敛性与稳定性,并通过数值实验来验证理论结果。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
2

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
3

硬件木马:关键问题研究进展及新动向

硬件木马:关键问题研究进展及新动向

DOI:
发表时间:2018
4

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015
5

资本品减税对僵尸企业出清的影响——基于东北地区增值税转型的自然实验

资本品减税对僵尸企业出清的影响——基于东北地区增值税转型的自然实验

DOI:10.14116/j.nkes.2021.03.003
发表时间:2021

汪志波的其他基金

批准号:11626067
批准年份:2016
资助金额:3.00
项目类别:数学天元基金项目

相似国自然基金

1

基本解方法在时间分数阶偏微分方程反问题中的应用

批准号:11126101
批准年份:2011
负责人:窦芳芳
学科分类:A0505
资助金额:3.00
项目类别:数学天元基金项目
2

非线性分数阶偏微分方程的高效数值算法研究

批准号:11526074
批准年份:2015
负责人:任金城
学科分类:A0504
资助金额:3.00
项目类别:数学天元基金项目
3

时间分数阶偏微分方程的差分方法

批准号:11326229
批准年份:2013
负责人:张亚楠
学科分类:A0501
资助金额:3.00
项目类别:数学天元基金项目
4

非线性时间分数阶方程的长时间稳定的数值方法

批准号:11871057
批准年份:2018
负责人:王冬岭
学科分类:A0504
资助金额:52.00
项目类别:面上项目