Temperature measurement and calibration are of great significance in scientific research and industry. In harsh environments or under strong interferences, thermal resistor or thermocouple cannot be used to measure the temperature and surface distribution accurately. Besides, the radiation thermometry cannot also meet the requirements. This study proposes a thermosensitive fluorescent materials and temperature measurement system based on fluorescence intensity ratio in order to resolve the problem. In view of the lattice vibration and luminescence center coupling, the luminescent center and matrix combination will be selected to obtain excellent properties. Based on the principle of crystal physics and crystal chemistry, the correlation among the materials composition, crystal structure and properties will be clarified. The relationship between crystal structure and temperature sensing performance will be analyzed using the computer simulation of first principle. The mechanism and influential factors for expanding the range of temperature measurement and improving the sensitivity will be explored. Property regulation technology of a novel thermosensitive fluorescent materials will be developed. A new method and a set of temperature measurement system will be established based on fluorescence intensity ratio, the error sources and optimization technology will be studied. The successful implementation of this proposal will not only contribute to the accurate measurement of temperature in critical conditions or harsh environments, but also has widely prospect in science and technology.
温度的测量与标定在科学研究及工业生产等领域具有重要意义。然而,在环境恶劣或存在强烈干扰等场合,无法使用热电偶或热电阻进行精确温度测定或温度面分布测量,辐射测温的精确度也无法满足需要,本项目创新性地提出研发基于荧光强度比测温原理的温敏荧光材料并开发相关测温系统以解决这一问题。综合考虑基质的晶格振动及发光中心的耦合选择适宜的发光中心和基质组合,基于晶体物理与晶体化学原理,研究材料成分、晶体结构与性能之间的关系,借助第一性原理和计算机模拟计算研究晶体结构与温度传感性能之间的关系,探索适用于荧光强度比测温原理的温敏荧光材料的测温范围扩展及灵敏度提高的影响因素及机制,获得其性能调控技术。建立基于荧光强度比测温原理的成套测温系统及测温方法,研究误差来源和优化技术。本项目的研究将为在极端条件和恶劣环境下精确测温提供理论依据和技术支撑,在科学研究及工程技术等领域有着广泛的应用前景。
温度的测量与标定在科学研究及工业生产等领域具有重要意义,在环境恶劣或存在强烈干扰等场合,无法使用热电偶或热电阻进行精确温度测定或温度面分布测量,辐射测温的精确度也无法满足需要,本项目创新性地提出研发基于荧光强度比测温原理的温敏荧光材料并开发相关测温系统以解决这一问题。首先基于磷灰石结构Ca9Tb(PO4)5(SiO4)F2(CTDPSF),系统研究了结构调控和三价阳离子掺杂对该体系发光材料的发光性能和温度传感性能的影响。计算得到CTDPSF:0.7Tb3+,0.3Dy3+的相对灵敏度(Sr)最大,为6.07*10-4 %K-1;CTSPSF:0.1Tb3+,0.9Sm3+的Sr的最大值为8.53*10-4 %K-1,说明制备的Dy3+掺杂比Sm3+掺杂荧光粉作为双发射温度计更具有潜在应用前景。接下来制备了钙钛矿结构Yb3+、Er3+共掺杂和Yb3+、Ho3+ 共掺杂的KLa1-x-yNb2O7荧光粉。对荧光粉分别进行了低温(80-333K)和高温(303-573K)下的荧光测试。揭示了不同稀土离子掺杂荧光粉的发光性能和温度传感性能的关系。当温度为303 K时,KLaNb2O7:0.03Er3+, 0.05Yb3+相对灵敏度达到最大值Sr=1.25*10-2% K−1,当温度为400 K时,绝对灵敏度(Sa)达到最大值8.26*10-3 K-1,在光学测温领域具有良好的性能和潜在的应用价值。最后,对辉石结构CaMgSi2O6进行阳离子取代和稀土离子掺杂,制备得到Ca0.75Sr0.2Mg1.05Si2O6:Eu2+,Tb3+荧光粉;通过Al3+、Sc3+取代Mg2+、Si4+和进行Tb3+,Sm3+掺杂,制备了CaScAlSiO6:Tb3+/Sm3+荧光粉,研究了成分、结构对发光性能的影响及温度传感性能。结果表明,CaScAlSiO6:Tb3+/Sm3+荧光粉的绝对灵敏度在77 K时最大值为1.403*10-1 K-1,相对灵敏度值最大值为1.65*10-2 K-1。本项目探索了结构与发光及温度传感性能的关联,研究了温度传感的机理,提高了材料的测温范围和灵敏度,获得了适用于荧光强度比测温方法的温敏荧光材料,基于合成的样品设计出了一套测温系统。所取得的理论成果可为新型稀土离子掺杂光致发光材料的结构设计和性能调控提供理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于细粒度词表示的命名实体识别研究
基于二维材料的自旋-轨道矩研究进展
基于荧光强度比的稀土上转换无机材料测温机理及其生物应用研究
荧光测温技术在低温风洞测温领域的应用研究
荧光测温与辐射测温一体化的光纤温度传感技术研究
Er3+/Yb3+体系能量传递对热耦合能级荧光强度比的影响及高灵敏度测温的研究