代谢工程改造大肠杆菌高产O-乙酰高丝氨酸的关键问题研究

基本信息
批准号:31801526
项目类别:青年科学基金项目
资助金额:25.00
负责人:周威
学科分类:
依托单位:中国科学院天津工业生物技术研究所
批准年份:2018
结题年份:2021
起止时间:2019-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:徐宁,魏亮,王一然,李家龙,刘川
关键词:
O乙酰高丝氨酸代谢工程分子生物学定向进化大肠杆菌
结项摘要

O-Acetylhomoserine is a key precursor for L-methionine production by bioconversion, and L-methionine is widely used in the fields of feed industry, food industry and medicine. Up to now, the efficient biosynthesis of O-acetylhomoserine is hardly achievable. In our earlier study, the biosynthetic pathway of O-acetyl-homoserine in Escherichia coli was constructed, and the feedback inhibition of homoserine acetyltransferase by O-acetylhomoserine was first discovered. However, the molecular mechanism of feedback inhibition by O-acetylhomoserine is unclear. Furthermore, the need for large quantities of reducing power and co-factors, competing metabolic pathways and complex metabolic regulation are the limit factors for the efficient production of O-acetylhomoserine. In this study, the feedback-inhibition resistance and stability of homoserine acetyltransferase will be improved by protein engineering, and the mechanism of anti-feedback will be analyzed by homology modeling. Furthermore, the biosynthesis pathway of O-acetylhomoserine will be systematically optimized by increasing the metabolic flow, optimizing the biosynthesis of reducing power and cofactors, and an efficient strain for O-acetylhomoserine production will be constructed. These results will not only elucidate the anti-feedback mechanism of homoserine acetyltransferase, but also provide a good foundation for L-methionine production by bioconversion.

O-乙酰高丝氨酸是生物转化法合成L-甲硫氨酸的关键前体化合物,而甲硫氨酸在饲料、食品、医药等领域具有广泛的用途。目前,O-乙酰高丝氨酸难以高效地生物合成。前期我们在大肠杆菌构建了O-乙酰高丝氨酸合成途径,首次发现O-乙酰高丝氨酸的合成受高丝氨酸乙酰转移酶的反馈抑制,有关该反馈抑制机理尚不明确。此外,大量还原力及辅因子的需求、竞争支路的存在以及复杂的代谢调控是O-乙酰高丝氨酸高效合成的限制因素。本研究拟对高丝氨酸乙酰转移酶进行蛋白改造,提高其抗O-乙酰高丝氨酸反馈抑制的能力及稳定性,并通过同源建模分析突变位点与抗反馈之间的关系;通过系统优化O-乙酰高丝氨酸代谢途径,包括提高O-乙酰高丝氨酸合成代谢流、优化还原力和辅因子的生物合成,获得O-乙酰高丝氨酸高产菌株。相关工作不仅可以阐明高丝氨酸乙酰转移酶抗O-乙酰高丝氨酸反馈抑制机理,同时也为生物转化法生产L-甲硫氨酸奠定良好基础。

项目摘要

OAH是一种具有潜在工业应用价值的前体化合物,是生物转化法合成L-甲硫氨酸的关键原料。但是由于其生物合成途径复杂,关键途径酶活性受到严谨反馈抑制效应,目前微生物难以高效合成O-乙酰高丝氨酸。本研究通过蛋白质工程等策略对高丝氨酸乙酰转移酶进行定向改造,获得了多个酶活性及抗O-乙酰高丝氨酸反馈性能提升的有益突变体,同时结合系统代谢工程方法对代谢途径进行组合优化,实现了大肠杆菌O-乙酰高丝氨酸的高效合成,最终获得的工程菌株能够发酵生产62.7g/L的O-乙酰高丝氨酸。相关研究可以为生物转化法生产下游产品L-甲硫氨酸奠定良好基础。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质

中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质

DOI:10.11862/CJIC.2019.081
发表时间:2019
2

组蛋白去乙酰化酶在变应性鼻炎鼻黏膜上皮中的表达研究

组蛋白去乙酰化酶在变应性鼻炎鼻黏膜上皮中的表达研究

DOI:10.16066/j.1672-7002.2021.06.013
发表时间:2021
3

BiVO4/Fe3O4@polydopamine superparticles for tumor multimodal imaging and synergistic therapy

BiVO4/Fe3O4@polydopamine superparticles for tumor multimodal imaging and synergistic therapy

DOI:10.1186/s12951-021-00802-x
发表时间:2021
4

基于好氧反硝化及反硝化聚磷菌强化的低温低碳氮比生活污水生物处理中试研究

基于好氧反硝化及反硝化聚磷菌强化的低温低碳氮比生活污水生物处理中试研究

DOI:10.13344/j.microbiol.china.190293
发表时间:2019
5

Photocatalysis-self-Fenton system with high-fluent degradation and high mineralization ability.

Photocatalysis-self-Fenton system with high-fluent degradation and high mineralization ability.

DOI:https://doi.org/10.1016/j.apcatb.2020.119150
发表时间:2020

相似国自然基金

1

代谢工程改造大肠杆菌积累莽草酸的关键问题研究

批准号:81102352
批准年份:2011
负责人:林军
学科分类:H3403
资助金额:14.00
项目类别:青年科学基金项目
2

代谢工程改造枯草芽孢杆菌合成N-乙酰神经氨酸关键问题的研究

批准号:31600068
批准年份:2016
负责人:刘延峰
学科分类:C0104
资助金额:21.00
项目类别:青年科学基金项目
3

大肠杆菌的代谢工程改造用于酶法生产谷氨酰胺

批准号:20506012
批准年份:2005
负责人:刘铭
学科分类:B0812
资助金额:25.00
项目类别:青年科学基金项目
4

代谢工程改造酿酒酵母合成D-柠檬烯的关键问题研究

批准号:31000807
批准年份:2010
负责人:周景文
学科分类:C2003
资助金额:20.00
项目类别:青年科学基金项目