In recent years there has been increasing interest in directly solving the contracted Shr?dinger equations for k-particle reduced density matrices (or their corresponding cumulants). Just like wavefunctions, reduced density matrices are not extensive (additively separable). However, the corresponding cumulants are of this important property, and scale linearly with respect to the number of electrons. Therefore, it is more appropriate to focus on cumulant-based formulations. This tempting project aimed to develop cumulant-based multi-configuration self-consistent field (MCSCF) theory and program. Due to limited time and great difficulties, the whole project has not yet been finished. However, significant progresses have been made in the formulations.
近年来,直接求解约化密度矩阵(或其累积量)的紧缩薛定愕方程成为多体理论的一个热点。像波函数一样,约化密度矩阵不是可加合量,但它的累积量却具有可加合性,即与电子数目成线性标度,因此应直接求解累积量的方程。本课题旨在发展基于累积量的多组态自洽场理论及程序,属探索性研究。由于时间关系和工作的难度,研究工作尚未完成,但在理论方面已取得一定进展。
{{i.achievement_title}}
数据更新时间:2023-05-31
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展
分数阶微分方程奇异系统边值问题正解的存在性
应用改进的 Kudryashov方法求解演化方程
基于化学反应动力学方程的一维膨胀时程模型
求解大规模矩阵问题的非准确方法和全局投影方法
低秩矩阵恢复的非凸松弛模型的理论与数值求解方法
求解线性和非线性约束矩阵方程的理论与算法研究
不适定问题求解的理论和方法