Hamilton系统同宿轨的研究

基本信息
批准号:11526041
项目类别:数学天元基金项目
资助金额:3.00
负责人:叶一蔚
学科分类:
依托单位:重庆师范大学
批准年份:2015
结题年份:2016
起止时间:2016-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:刘学文,蔡钢,雷桥
关键词:
Hamilton系统存在性和多重性同宿轨变分方法
结项摘要

Hamiltonian systems is an important field of research in nonlinear science. It comes from the geometrical optics, and has a natural connection with classical mechanics and celestial mechanics. Finding homoclinic orbits has been one of the most important problems in the study of Hamiltonian systems. This project will apply variational methods and critical point theory to study the existence and multiplicity of homoclinic orbits of Hamiltonian systems. The main contents include: (1)we will study the existence and multiplicity of homoclinic orbits of the nonperiodic first-order Hamiltonian systems with subquadratic potential or concave-convex nonlinearity; (2)we will study the existence and multiplicity of homoclinic orbits of the second-order Hamiltonian systems with sign-changing potential, and discuss the effect of different nonlinear assumptions, together with the change of parameter, on the existence of homoclinc orbits. We hope that the projet can enrich and develop the theories of Hamiltonian systems, and also provide theoretic references and technical supports for other scientific fields.

Hamilton系统是非线性科学的一个重要研究领域。它源于几何光学,同经典力学和天体力学有着自然的联系。寻找同宿轨是Hamilton系统研究问题中最重要的问题之一。本项目拟使用变分方法和临界点理论研究一阶、二阶Hamilton系统同宿轨的存在性和多重性,主要内容包括:(1)研究一阶非周期Hamilton系统分别在次二次情形和带凹凸非线性项情形下同宿轨的存在性、多重性以及无穷多条同宿轨的存在性;(2)研究具有变号位势的二阶Hamilton系统同宿轨的存在性和多重性,探讨不同非线性条件以及参数变化对同宿轨道存在个数的影响。期望本课题的研究能丰富和发展Hamilton系统理论,同时为其它相关科学领域提供理论依据和技术支持。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
3

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
4

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
5

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019

叶一蔚的其他基金

批准号:11601049
批准年份:2016
资助金额:19.00
项目类别:青年科学基金项目

相似国自然基金

1

Hamilton 系统的同宿、异宿轨及相关问题

批准号:11171351
批准年份:2011
负责人:唐先华
学科分类:A0301
资助金额:50.00
项目类别:面上项目
2

Hamilton系统同宿轨与双曲轨的研究

批准号:11626198
批准年份:2016
负责人:吴东伦
学科分类:A0206
资助金额:3.00
项目类别:数学天元基金项目
3

渐近周期Hamilton系统同宿轨的研究

批准号:11801472
批准年份:2018
负责人:吴东伦
学科分类:A0303
资助金额:25.00
项目类别:青年科学基金项目
4

非周期Hamilton系统同宿轨的研究

批准号:11601049
批准年份:2016
负责人:叶一蔚
学科分类:A0206
资助金额:19.00
项目类别:青年科学基金项目