It is an urgent need to solve the problems of energy shortage and environmental pollution for the sustainable development of human society. Exploitation and utilization of solar energy to realize the photocatalytic water splitting for hydrogen production and degradation of environmental pollutants under visible light irradiation has important practical significance for the solution of the above problems. Focusing on broadening spectral response range, promoting photo-generated electron-hole pair separation and transport, improving photocatalytic performance, in this project, the novel and high-efficiency semiconductor-metal Cu2MX3-Au heteronanostructured photocatalysts have been synthesized. Firstly, the Cu2MX3-Au heteronanostructures have been controllably fabricated based on the combination of nano manufacturing technologies and controllable synthesis methods. And then, the influence mechanisms of morphology, size, and composition on the energy band structure, optical property, and quantum efficiency of the materials have been systematically investigated. The effective methods for improving the photocatalytic performance have been obtained through the optimization of the material and device structures. Moreover, the photocatalytic mechanisms of the Cu2MX3-Au heteronanostructures have been clarified through the exploration of the relations between crystal structure, energy band structure, surface/interface microstructure of materials and their photocatalytic properties. These results are very important for further exploration of the interaction mechanism of the photocatalytic water splitting for hydrogen production and degradation of environmental pollutants using semiconductor-metal heterostructures. Moreover, the insights gained from this project will provide the necessary scientific basis and theoretical guidance for the investigation of the other photocatalytic materials.
解决能源短缺和环境污染问题是人类社会实现可持续发展的迫切需要。开发和利用太阳能,实现可见光下光催化分解水制氢和降解环境污染物对解决上述问题具有重要的现实意义。围绕拓宽光谱响应范围、促进光生电子-空穴对的分离与传输、提高光催化性能等问题,本项目拟制备新型高效半导体-金属Cu2MX3-Au异质纳米结构光催化材料。首先基于纳米制造技术与可控合成方法相结合的策略,实现对异质纳米结构的可控生长及构筑;进而研究材料的形貌、尺寸、组分对其能带结构、光学性能、量子效率的影响机制;结合对材料结构和装置结构的优化,获得提高光催化性能的有效方案;通过探讨晶体结构、能带结构以及表/界面微观结构与光催化性能之间的内在关系,阐明该材料的光催化机理。该项目的顺利开展不仅对深入探讨半导体-金属异质结构在光解水制氢和环境污染物降解的作用机制方面具有重要意义,而且也可为研究其它光催化材料提供必要的科学依据和理论指导。
能源短缺和环境污染是当今世界面临的严峻挑战,解决这两大问题是人类社会实现可持续发展的迫切需要。太阳能具有资源丰富、易于获取、清洁无污染、安全可靠等优点,其合理开发和高效利用受到人们的广泛关注。本项目主要围绕拓宽光谱响应范围、促进光生电子-空穴对的分离与传输、提高太阳能转换效率等问题,发展新型高效光电和光催化材料。基于液相胶体成核生长理论和晶体生长理论来调控纳米晶合成中的反应参数,我们实现了Cu-M-X@Au(M=Ge,Sn,Ga,Fe,Cr,Nb;X=S,Se,Te)纳米材料的可控制备,探索了纳米晶体的生长机理,发展了制备工艺简单、成本低、环境友好的合成方法。在探究材料结构-性能的“构效关系”方面,通过对目标纳米材料的结构、尺寸、形貌、维度的有效调控,提高其光吸收性能、光生载流子分离与传输效率,推动新材料在清洁能源开发和环境污染治理研究领域的应用。围绕上述研究内容,我们系统开展了一系列的研究工作,取得了诸多有意义的研究成果,达到了预期目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
二维材料MX (M=Ga,In, X=S,Se,Te)光催化分解水的理论研究
(Ge,Sn)Se基范德瓦尔斯异质结的构筑及其输运性质研究
高压高剪切下SnX (X= S,Se和Te)结构和物性研究
Sn(Se,S)/低维碳织构化纳米复合材料的可控构筑及热电性能研究