The project aims to develop advanced functional dyes by providing a novel strategy to solve the crucial problem of functional dyes, the shortage of thermo-, photo- and electro-stability which is the key obstacle to their widespread application in industries. .Generally, the oxidative degradation is mainly caused by single oxygen and other reactive species which is closely associated with the excited states of the dye molecule. Therefore, our approach is to design intra-molecular electron transfer (electron donor or acceptor) or rotation groups (rotor)which can quickly quench the excited state of the dye molecule, thereby prevent the generation of singlet oxygen and other reactive species, and improve the stability of the dyes. The quenching groups in the dyes can dissipate the energy of the excited dye molecules via intra-molecular electron transfer process or molecular rotation. .In fluorescent dyes, the quenchers can improve the stability and quench the fluorescence at the same time via electro transfer process/molecular rotation; however, when the quenchers have the function as an inhibitor of an enzyme biomarker, the photo, thermo-stable functional dyes can be developed as selective and sensitive fluorescent probes for the detection of enzymes or biomolecules, which is useful for the early diagnosis and resection in surgery of cancers. The presence of enzymes will inhibit the electron transfer process/molecular rotation in the fluorescent probes to light up the fluorescence through the selective interaction between the inhibitor and the enzyme. Using the same approach, the stability of the textile dyes can also be achieved. By enhancing their compatibility with polyesters, the stable textile dyes can be used in melted spun-dyeing of terylene fibers at high temperature without degradation, and can also be used in ink-jet printing of textiles by melting in nanoparticles via macro- or mini-emulsion polymerization. All of the dyeing and printing technologies are green processes. .Therefore, the study in this project is going to play very important roles in promoting the sustainable development of dye industry in the areas of dyeing, printing, biology and medicine.
本项目针对功能染料在光、热或电等苛刻条件下耐受性不足的关键性难题,采用“猝灭激发态”提高染料耐受性的新思路来设计染料分子,研发高耐受性的新功能染料。项目研究从改进染料自身分子结构出发,通过构建激发态猝灭基团(电子转移基团和分子内转动基团)来猝灭染料分子的激发态,降低单线态氧的产率,避免染料被氧化分解,提高染料对高温、强光或电的耐受性。采用具有专一性识别、猝灭激发态的双功能基团,开发出的荧光探针耐受性高、对肿瘤等靶标具有专一性荧光响应,可以用于癌症的早期诊断和肿瘤切除界定,拓展染料在生物医学应用的新领域;通过改造耐受性染料的结构,提高其与树脂的相容性,开发的耐高温新染料具有与涤纶高温分子状态溶解或适合于制备染料-树脂纳米乳液的特性,能够应用于“干法”绿色印染新工艺(涤纶高温原浆喷丝染色和喷墨印花),消除环境污染。本研究对于染料工业升级、印染工业改造、生物医学的研究和应用具有重要意义。
我国染料产业将进入以结构调整、产品升级、绿色发展为主要特征的高质量发展新时代。作为典型的高附加值精细化学品,生物医用染料可应用于荧光标记、体外诊断、疾病治疗等领域。尤其在肿瘤的荧光诊断和治疗上,功能染料发挥着重要作用。本项目在肿瘤的荧光诊断和治疗领域取得了系列突破性进展,推动了高性能肿瘤诊疗用功能染料的发展。项目发表标注性资助文章130余篇,授权专利6项。项目执行期间获杰青资助1项、优青基金资助项目2项。荧光靶向识别染料应用于五分类血细胞分析系统创制,在国内及海外94个国家的5000余家医院应用,“有力推动了我国血细胞分析系统从国内空白到国际一流的跨越,具有显著的创新性,整体技术水平处于国际领先”,获2020年国家技术发明二等奖。
{{i.achievement_title}}
数据更新时间:2023-05-31
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
地震作用下岩羊村滑坡稳定性与失稳机制研究
卡斯特“网络社会理论”对于人文地理学的知识贡献-基于中外引文内容的分析与对比
山核桃赤霉素氧化酶基因CcGA3ox 的克隆和功能分析
采用黏弹性人工边界时显式算法稳定性条件
新型染料分子的设计、合成及应用
绿色轮胎胎面用橡胶的分子设计合成
新型分散染料多样性导向绿色合成及结构与性能研究
染料敏化太阳能电池中染料的分子设计、合成与光电性能研究