Recently, hydrogen evolution reaction (HER) catalyzed by efficient electrocatalysts has been considered as one of the most attractive hydrogen production pathways due to its high energy economy and environmentally benign quality. However, the expensive and rare nature of the traditional platinum-based electrocatalysts intensively hinders the practical application of HER. Hence, exploring novel non-platinum electrocatalysts with high efficiency and low price becomes more and more imperative. In this project, focused on the non-platinum transition metal compounds, we plan to investigate the systematic optimization strategy of active sites and electric conductivity by analyzing the restrictive factors of the catalytic processes, and further realize the function-oriented design and performance optimization of non-platinum electrocatalysts. By means of defect engineering and amorphization, active sites of as-known catalysts can be rationally modulated; identification of active site locations of novel electrocatalysts can be achieved via crystal facet engineering accompanied with electrochemical normalization analyses; in addition, electric conductivity of the non-platinum electrocatalysts can be enhanced by elemental doping, oriented crystal growth and hybridization with other highly conductive materials. Thus, the structure-activity relationship among active sites, conductivity and catalytic activity will be investigated, and the HER performance of the non-platinum electrocatalysts will be maximally optimized by synergistic modulation of active sites and conductivity. The implementation of this project will provide theoretical and methodological guidance for design of new electrocatalysts, and offer solid material support for the exploitation of hydrogen energy.
近年来,基于高效电催化剂的析氢反应因其较高的能源经济性与环境友好性成为广受关注的一种氢气制备途径。然而,传统的铂基电催化剂昂贵和稀缺的固有属性限制了析氢反应的实际应用前景,因此开发高效且廉价的新型非铂电催化剂势在必行。本项目拟以非铂过渡金属化合物为目标,通过分析催化过程中的制约因素,探究活性位点与材料导电性的系统优化策略,实现非铂电催化剂的功能导向性设计与性能优化。通过缺陷工程、非晶化等手段,实现已知电催化剂活性位点数的可控调制;通过晶面设计、电化学归一化研究等途径实现新型电催化剂活性位点位置的确定;通过元素掺杂、取向生长、复合杂化等手段实现非铂电催化剂导电性能的提升,并探究活性位点、导电性与催化性能之间的构效关系;进一步通过协同调控活性位点与导电性,实现非铂电催化剂析氢反应活性的最优化。该项目的实施将为设计新型电催化剂提供理论和方法指导,并为发展氢能源提供材料基础。
非铂电催化剂因其高效廉价的优点被视为贵金属催化剂的潜在替代物,被越来越多地应用于能源转换领域。在本项目实施过程中,项目负责人基于对析氢反应进程中催化性能制约因素的分析,对基于过渡金属化合物的非铂电催化剂开展了系统的研究,同时拓展了此类电催化剂在其他能源转换途径中的应用,取得了系列成果。提出了通过设计缺陷结构、多孔结构、非晶结构以及无序结构增加析氢反应活性位点的暴露率或使催化活性物质在电化学过程中更易形成;利用元素掺杂、与高导电性材料复合杂化等方式有效调控了材料的电子结构,以利于电催化过程中电子的快速传导;发展了电催化剂的协同优化策略,使活性位点与电子传导能力得到同步提升,最终获得了一系列高性能电催化剂,为开发新型能源电催化剂提供了参考。基于以上研究,项目负责人在Adv. Mater.、Nano Energy、Nano Res.、J. Mater. Chem. A、ChemSusChem等化学、材料领域重要期刊发表论文15篇,并应邀为Chem. Eur. J.撰写综述论文。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
功能导向过渡金属化合物析氢反应电催化剂的理论设计与性能研究
新型非贵金属磷基析氢催化剂设计及催化机理的理论研究
过渡金属碳、氮化合物析氢反应机理与性能优化的第一性原理研究
金属非氧化物制氢催化剂的结构调控与性能优化