The project is planning to solve two key technology problems— rapidly modeling of high precision prediction model and geological surfaces automatic fitting based on the few control points and a lot of geological knowledge, which offers technical support for three-dimension metallogenic prognosis which integrates rapidly modeling, 3D visual analysis and orebody prediction for quality, quantity and probability. The project group has developed 3DExpolor Software for 3D mineral exploration..The project group will put forward solutions for rapidly modeling of high precision prediction model and geological surfaces automatic fitting by using theories of large-scale metallogenic prognosis, data from geological survey, mineral exploration, geochemical survey and geophysical survey, and cube prediction model. The research results will solve some of key techniques so as to extracting and integrated mineralization information. The techniques have independent intellectual property rights and satisfy the actual application requirements. The project is planning to test, analyze and amend by experiments of a mining area in Tibet. . The research contents are as follows:. ⑴. 3D geological surfaces automatic fitting model based on geological interfaces automatic fitting with few control points and geological knowledge. ⑵. Add fault processing functions based on content (1). ⑶. Rapidly modeling of high precision prediction model from complex geological body or arbitrary non-self-intersection surface. ⑷. Module development of 3D metallogenic prognosis based on Weights of Evidence Model.The key technologies to be adopted are as follows:.⑴.Potential Field Interpolation method. The method principle is to summarized the geology by a potential field, namely a scalar function T(p) of any point p = (x,y,z) in three-dimension space, designed so that the interface S corresponds to an iso-potential surface..⑵. Marching cubes idea.. An algorithm is that creates a triangle representation of an iso-surface from a volumetric dataset. The basis of this algorithm is a sequential tessellation of the boundary voxels by small triangles. The algorithm was originally presented by Lorensen and Cline. A refinement, called marching tetrahedra, deals with some of the ambiguous cases not covered by marching cubes..⑶. Flood-fill idea.. Flood fill, also called seed fill, is an algorithm that determines the area connected to a given node in a multi-dimensional array. It is used in the "bucket" fill tool of paint programs to determine which parts of a bitmap to fill with color.
本项目解决大比例尺成矿预测中,地质体预测要素模拟与成矿信息综合分析研究面临的两个关键技术问题--基于较少深部勘探工程控制点与地质认识约束的三维地质体界面自动拟合和高精度立方格预测模型快速构建--为大比例尺成矿预测提供有效的技术支撑,促进地质工作由二维向三维转换。本课题组以构造地质学、数学地质、大比例尺成矿预测技术流程以及相关的勘查技术方法为指导,在多年从事"探矿者"矿山勘查软件设计与开发的基础上,将上述两个关键技术归纳为多维地质建模问题,并开展相关数学模型研究。在解决了数学模型问题之后,应用三维动态建模、三维空间插值、曲面提取、快速空间检索、三维可视化等技术,提出解决上述两个关键问题的算法模型并开发原型程序,为预测要素快速模拟,成矿信息自动提取、识别、浓缩与优化提供技术支撑。同时,项目还将应用西藏某矿区实际数据对研究成果进行验证。
本项目重点解决大比例尺成矿预测中的两个基础性问题,即地学空间建模与成矿信息综合分析研究面临的两个关键技术问题——基于较少深部勘探工程控制点与地质认识约束的三维地质体界面自动拟合和高精度立方格预测模型快速构建——为大比例尺成矿预测提供有效的技术支撑,促进我国地质工作由二维向三维转换。在项目实施过程中,项目组综合地质学、数学地质以及计算机几何建模算法等多学科理论方法,总结出地质属性-时空关系-几何算法的矿集区尺度三维地质建模方法模型,普适性地解决了较少深部勘探工程情况下的三维地质体建模问题;另一方面,开展高精度立方格预测模型快速构建算法研究,将Flood-fill算法扩展到三维空间,普适性地解决地质体由三角网格模型转换为立方格模型过程中遇到的两个技术问题,即地质体空间形态复杂和体元数量大(百万数量级及以上)。同时,在“探矿者”矿山勘探软件V2.0版(自主开发)的可视化系统基础上,初步将上述两个模型功能化、模块化,为预测要素快速模拟,成矿信息自动提取、识别、浓缩与优化提供技术辅助工具。同时,项目分别在西藏甲码铜多金属矿矿区和湖南花垣MVT型铅锌矿矿集区,开展高精度立方格预测模型快速构建和基于地质知识的三维地质体界面自动拟合方法的实验性应用,并对研究结果进行总结与讨论。
{{i.achievement_title}}
数据更新时间:2023-05-31
新型树启发式搜索算法的机器人路径规划
"多对多"模式下GEO卫星在轨加注任务规划
具有随机多跳时变时延的多航天器协同编队姿态一致性
强震过程滑带超间隙水压力效应研究:大光包滑坡启动机制
多元化企业IT协同的维度及测量
基于立磨机关键参数的介质运动特性及输入功率预测模型研究
基于系统动力学的卫生总费用仿真模拟与预测模型研究
基于层间摩擦磨损的深水动态柔性立管疲劳机理与预测模型研究
快速失压流体跨临界区瞬态传热机理及预测模型构建