This project aims at the challenge to guarantee high energy-efficiency design and high-accuracy machining for large-scale complex parts such as aerospace structural parts and aero-engine blades. By combining design methodology of parallel mechanisms and flexure mechanisms with digital manufacturing technology, the project aims to develop a new design paradigm for a robotized equipment which can achieve high-efficiency and high-precision machining: a parallel mechanism acting as the robot body structure to achieve energy-efficient transmission and manufacturing, the introduction of flexible dampers and dynamic vibration suppression algorithm to achieve energy absorption damping and potential high precision. The project mainly focuses on three aspects: the robot body structure, the joint damping and high-precision guarantee: (1) the innovative design of the energy-efficient parallel robot body structure; (2) the dynamic vibration absorber and the vibration-damping mechanism based on the flexible bearings and flexure mechanisms; 3) rigid-flexible coupling dynamics modelling and vibration suppression method; (4) high-precision kinematic calibration technology; (5) interaction safety design between the end effector and the workpiece; (6) development of machining robot prototype and test validation. It is expected that the high-power transmission mechanism and energy efficient based design theory for the rigid-flexible coupling robot will be established, and the high energy-efficiency will be realized by the innovative design of the robot body structure. Through the flexible damper design near or within both the base and joints, modelling and vibration suppression control, as well as high-precision kinematic calibration technology, the high-precision machining of the robot may be achieved. The outcomes of the study is of great significance to promote China's aerospace, energy and other areas of urgent need for large complex components of the manufacturing capacity and level of breakthrough.
项目针对大型复杂、多样化零件的高效精密加工需求,通过机构学、力学与数字化加工的交叉融合,实现加工机器人的自主创新:将并联机构作为机器人本体实现运动和力的高效传递与灵活的姿态调整,引入柔性阻尼和时滞动力学模型实现减振和抑振,通过变刚度实现机器人与工件间的安全交互。主要围绕机器人本体结构、关节阻尼、精度保障三方面开展研究,包括:高能效的机器人本体机构与结构创新设计;基于柔性的吸振、减振机理与结构设计;刚柔耦合动力学建模与振动抑制方法;强耦合运动学精度标定技术;机器人-工件的安全交互设计;原型样机研制与试验验证。预期将建立刚柔耦合型加工机器人的高功率传动机理、高能效设计理论及高精度保证方法,突破加工机器人高效高精难题,实现机器人与复杂、多样性工件之间的共融。研究结果对提升我国航空航天、能源等领域亟需的大型复杂零件的制造能力与水平、机器人装备的自主创新及机器人学与制造学科的交叉融合具有重要意义。
本项目开展了便携式刚柔耦合加工机器人高能效设计与精度保障等基础理论与关键技术研究,提出了并联机器人功率传递性评价指标与极限切削用量指标,建立了基于参数灵敏度的高能效优化设计方法;提出了柔性吸振器通用设计方法与基于变刚度原理的安全关节设计方法,实现了临界碰撞载荷作用下的零刚度;建立了加工机器人刚柔耦合误差模型,准确补偿末端位姿误差,提高了机器人定位精度;提出了耦合调姿运动控制方法与高速高精进给速度规划方法,提升了机器人的控制精度;建立了基于神经网络和切换控制的抑振方法,实现了快速定位与高效抑振。基于上述理论与技术成果,研制了桁架式、真空吸附式、电磁吸附式三套加工机器人样机,其中桁架式加工机器人已在成都飞机工业有限责任公司应用,完成了框架类结构件、连接板、加强框等关键零部件加工,加工精度满足工艺要求。本项目研究成果解决了航空工业结构件制造过程中面临的高效高精国产化加工难题,对我国高端航空装备制造技术自主可控意义重大。.项目执行期间,出版学术著作2部;发表论文33篇(其中SCI检索23篇,EI检索7篇);申请中国发明专利13项、美国专利1项(其中获授权的中国发明专利11项);承办了国际学术会议IEEE-CYBER 2019,主办了国际学术会议ICIRA 2021;项目负责人担任CCMMS 2020大会主席;1名青年教师与2名博士生赴海外进行交流学习;4人次参加国际学术会议并做口头报告;应邀参加会议并做报告13人次;青年教师谢福贵获得国家优秀青年科学基金项目资助。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
坚果破壳取仁与包装生产线控制系统设计
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
宽弦高速跨音风扇颤振特性研究
基于二维材料的自旋-轨道矩研究进展
冗余驱动刚柔协作搅拌摩擦焊机器人高能效设计方法与关键技术研究
可控非均匀流场驱动电弧机制及高能脉冲放电加工精度保障方法
保障用户最小速率需求的中继OFDMA网络高能效优化设计研究
刚柔耦合2K-V型传动装置的精度设计与实验研究