High accuracy and high performance of 2K-V type reducer is the key component of industrial robots, electrical and mechanical accuracy control devices, military equipments and other high accuracy intelligent equipments. Its accuracy design has the important research value. The fine nonlinear dynamics model for 2K-V reducer is established in this subject based on multi-body dynamics theory of rigid-flexible coupling comprehensively considering transmission parts’ flexibility, time-varying meshing stiffness, assembly error and other factors. The dynamic model is modified and improved through the experimental tests for different models, different structural parameters of prototypes. The model is solved by the numerical method. Mapping network between error sources and transmission accuracy of this transmission system is established. Impact factors of transmission accuracy are quantitatively analyzed combining with simulation experiments to provide methods and basis for the accuracy design of high accuracy transmission device. Dynamic simulation and experiment are performed to find the compensation principle of cycloidal pin wheel’s flexibility on drive parts’ manufacturing error assembly error and clearance in the multi-tooth meshing transmission. The influence of the static and dynamic error (such as the processing error, the micro deformation and displacement on the support position, etc), bearing stiffness and other factors on the system drive accuracy has been taken into account. Finally the tolerance control strategy of key parts is reasonably drawn up so as to ensure the accuracy and reduce the manufacturing cost. On this basis, the accuracy design standards of high accuracy 2K-V transmission are formulated so as to promote the industrialization of high accuracy 2K-V reducer with Independent intellectual property rights.
高精度高性能2K-V型减速器是工业机器人、机电精密控制装置及军事装备等高端精密智能装备的关键部件,其精度设计有重要的研究价值。本课题基于刚柔耦合多体动力学理论全面考虑传动件柔性、轮齿时变啮合刚度、装配误差等因素建立2K-V减速器精细化非线性动力学模型。通过对不同机型、不同结构参数样机的实验修正动力学模型。采用数值法解算模型并建立该传动系统的误差源与传动精度之间的映射网络, 结合模拟实验定量分析传动精度的影响因子,为该传动装置的精度设计提供方法和依据。综合考虑动静态误差(如加工误差、支承处的微变形位移等)等因素对系统传动精度的影响,动态仿真并实验测试摆线针轮多齿啮合传动中其柔性对传动件制造误差、装配误差及间隙的补偿机理,从而合理制定关键零部件的公差控制策略,以保证精度的同时有效降低制造成本。在此基础上制定2K-V型减速器精度设计标准, 从而推进自主知识产权的高精度2K--V型减速器的产业化。
由于工业机器人用高精密减速机目前主要依赖进口,实现国产化有较大困难,而问题的关键之一是传动精度达不到国际标准。国家自然基金青年项目“刚柔耦合2K-V型传动装置的精度设计与实验研究” ,针对影响传动精度的因素和规律及提高精度的方法展开研究。.主要内容如下:.1)传动精度影响因子的量化分析。对该传动系统各部分的联接配合与传动精度的相关性进行剖析,综合考虑各零件加工误差、装配间隙、轮齿的接触弹性变形对系统传动精度所产生的影响。探索对传动件制造误差、装配误差及间隙的补偿机理,为该传动装置要求的传动精度与对应的制造公差制定提供依据。.2)刚柔耦合多体系统的仿真测试研究。通过建立刚柔耦合的2K-V型复杂传动系统的多齿啮合接触分析模型,明晰摆线轮、针齿的柔性变形及齿形修形对制造误差、装配误差及间隙的补偿机理。.3)2K-V型传动装置的精度设计。通过优化设计的方法制定关键零部件的公差控制策略。此外,结合实验研究该传动系统动态特性,在此基础上验证该系统刚柔耦合动力学模型及数值仿真结果的正确性。.重要结果、关键数据:较为全面地分析了传动精度的影响因素及规律,提供了一种可以保证该传动装置获得高精度传动的公差控制方法。.研制出实验用高精度2K-V型传动装置样机,其回转传动误差达到:角传动误差≤1arc.min(在输出轴上测),空程≤1.5arc.min(输出轴上测量)。达到国际标准。.科学意义:为工业机器人用高精密减速机的国产化提供了精度分析的理论支撑和方法,对该类型减速机其他性能分析研究具有借鉴价值,对该减速机公差控制的进一步研究提供思路和方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
便携式刚柔耦合加工机器人的高能效设计与精度保障方法研究
欠驱动连续型刚柔耦合并联指机构的综合方法与设计理论研究
旋转刚柔耦合系统动边界模态特性的理论与实验研究
基于薄壁工件的刚柔耦合系统稳定性分析与实验研究