Semiconductor nanowires are leading candidates for future applications in a wide variety of electronic, photonic, and sensing devices. III-V compound semiconductor nanowires have a number of potential physical advantages over elemental semiconductor nanowires including high mobility and direct bandgap. Furthermore, the magnitude of the bandgap can be modulated by exploiting ternary compound semiconductors, allowing the creation of heterostructure nanowires with selective optical energies. .One of the most intriguing features of semiconductor nanowires is the ability to realize epitaxial growth of material combinations not realized in bulk or layer growth. Of particular interest is the growth of group III-V semiconductors on Si substrate, exploiting the mature Si technology, the ability of large substrates in combination with the superior optoelectronic and electronic properties of III-V compounds. Metal seed particles are widely used for nanowire growth, preferentially Au nanoparticles. For the integration with Si technology, this is problematic due to Au forming deep level traps in Si. Therefore, several growth schemes avoiding foreign metal seed particles have been developed. A variety of mechanisms of catalyst-free growth have been suggested, but surprisingly little systematic work has been performed to establish these mechanism firmly, and more importantly, to determine the actual relevant one for wire nucleation. Here, we propose the catalyst-free InAsSb direct epitaxial growth mechanism on GaAs/Si virtual substrate for mid-IR applications, which can be used as highly integrated, low cost Si-based mid-IR photonic devices, such as lasers and photodetectors.
半导体纳米线在电子、光电子以及传感器件中有着广泛的应用前景。III-V族半导体纳米线因其具有高发光效率(直接带隙发光)和高电子迁移两个优点而备受关注。通过改变III-V族纳米线的组分,可以调节其带隙的宽度,从而可以实现不同光谱波段的应用。半导体纳米线另一个迷人的特点是可以实现不同材料的混合外延生长,而这是普通薄膜材料所很难达到的。然而传统的纳米线生长需要用到金属催化剂,金属催化剂如金的使用会形成深能级陷阱,污染半导体纳米线,从而严重影响光电子器件的性能。因此纳米线的无催化剂外延生长就显得极为重要。本项目拟探索无催化剂的InAsSb纳米线在GaAs衬底上的高质量外延生长,在实现了此目标的情况下,利用申请人之前硅基GaAs高质量外延生长的丰富经验,进一步实现无催化剂InAsSb纳米线在硅衬底上的高质量生长。该研究工作的顺利开展和完成将推动硅基中红外光电子器件大规模集成的发展。
该项目执行期间,世界范围内首次利用分子束外延生长在GaAs(100)衬底上实现了InAs和InAsSb纳米线的无催化剂水平生长,该创新生长方式解决了GaAs(111)和Si(111)衬底上构造InAs和InAsSb纳米线时堆垛层错的问题。 利用氧等离子表面处理技术,首次实现InAs纳米线在GaAs(100)衬底上在[1-10]方向的自形核外延生长,以及InAsSb纳米线在GaAs(100)衬底上在[110]方向的自组装外延生长,从而抑制了Si(111)和GaAs(111)衬底上竖直生长纳米线的堆垛层错问题。通过对该InAs和InAsSb纳米线进行荧光光谱表征,获得室温1.6um以及1.9um波长的宽谱强发光。并同时实现了GaAs(100)图形衬底上高质量AlAs/GaAs/AlAs和GaAs/InGaAs/GaAs核壳纳米线的水平选择性定位生长。该成果为未来III-V族红外以及中红外纳米线定位大面积外延制备打下了重要的基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
内点最大化与冗余点控制的小型无人机遥感图像配准
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
氯盐环境下钢筋混凝土梁的黏结试验研究
结核性胸膜炎分子及生化免疫学诊断研究进展
硅基Ш-V族长波红外材料InAsSb单晶的生长及其性能研究
GaAs基InAsSb势垒型红外探测器的MOCVD生长与器件研究
硅基光电子器件及集成
硅基微纳光子器件及集成