The existing driving system for electric vehicles cannot take consideration to the low speed large torque and the high and wide range speed at constant power, the high precision and the reliability of the position sensor, the efficient operation in the single and the full load condition, and urgent needs improvement of the reliability and the stationarity. In view of these, local project presents a high reliability reliability disc motor system integrated high precision magnet encoder and permanent magnet cage-rotor. The rotor is based on a mixed structure of permanent magnet cage type winding, and the stator is composed of T-type and iron core of SMC and variable-pole and torsion-ring type single-winding. Combined with a synchronous magnetoresistance type structure and radial salient-pole eddy current starting, the motor forms a shaft radial hybrid-magnetic-circuit, which makes full use of the space and promotes the torque and the power density. At the same time, local project designed a new type high-precision magnetoelectric hall encoder which can be placed inside the motor to realize the miniaturization of the system, and developed a high-precision and highly reliable look-up table with reconstruction and mapping, as well as a solving method based on double synchronous coordinate. In order to improve system reliability and tolerance, a sensorless vector control based on disturbance compensation has been proposed. Smooth switching strategy between vector control with position sensors and proposed sensorless control will be conducted in the future. It is necessary for application to construct design optimization and operation control theory of this novel machine system, and to design engineering prototype with control system.
现有电力牵引与推进用电机系统难以兼顾低速大转矩与高速宽范围恒功率调速、位置传感器的高精度与高可靠性、单一工况与全负载全转速高效运行,且运行可靠性与平稳性亟待提升。为从根本上解决上述不足,本项目提出一种集成高精度磁电编码器的高可靠笼型永磁转子盘式电机系统。电机转子采用笼型绕组和永磁体混合结构,定子由T型SMC铁芯和可变极扭环式单绕组构成,兼顾低速与高速性能,实现全工况高效运行。配合径向凸极涡流启动同步磁阻式结构,形成轴/径向混合磁路,充分利用空间,提升转矩和功率密度。设计新型可集成于铁芯内部的磁电编码器,实现系统小型化。开发高精度及高容错性重构映射查表法及双同步坐标变换轴角解算算法。提出基于扰动补偿的无位置传感器矢量控制技术,研究有/无位置传感器控制平滑切换策略,保障系统可靠性和容错能力。项目拟构建这一新型电机系统设计优化与运行控制理论体系,研制电机工程样机和驱动控制装置,奠定实用基础。
现有电力牵引与推进用电机系统难以兼顾低速大转矩与高速宽范围恒功率调速、位置传感器的高精度与高可靠性、单一工况与全负载全转速高效运行,且运行可靠性与平稳性亟待提升。为解决上述不足,本项目提出一种集成高精度磁电编码器的高可靠笼型永磁转子盘式电机系统。电机采用笼型永磁转子、T型SMC定子铁芯、可变极扭环式单绕组等技术,充分利用空间,提升转矩和功率密度,拓宽调速范围。分析电机转矩脉动的主要构成,针对电机固有齿槽转矩,提出一种具有斜极与移相双重效果的不对称双向斜极技术,通过对斜极模式、斜极角、移相角的优化,齿槽转矩抑制幅度达86.47%,转矩脉动降幅达78.8%。分析硅钢片、非晶合金、软磁复合材料(SMC)的各项材料特性,探讨不同材料对电机性能的影响,最终采用SMC作为T型定子铁芯材料,实现三维轴径向磁路。设计新型可集成于铁芯内部的新型高精度霍尔磁电编码器,实现系统小型化。开发了改进型的离线重构映射查表法和双同步坐标变换锁相环跟踪法两种轴角数字解算算法,解决了由于动态误差造成的结算结果中的恒值和跳变问题,使磁编码器实现无静差跟踪。无位置传感器矢量控制方面,提出基于带宽自适应扩张状态观测器,保证宽速范围一致的反电势观测精度。提出基于电流微分前馈的转速估计补偿策略,通过小信号模型对电机动态机械特性进行深入分析,探究无传感器系统动态性能不足的根本原因;进而,将负载扰动表征为q轴电流的微分,构建q轴电流的微分与转速波动的定量关系;最终,利用该定量关系对转速估计值进行前馈补偿,从而降低负载扰动下的转速估计误差。开展了基于BP神经网络的永磁同步电机自抗扰控制系统设计研究,解决了永磁同步电机自抗扰控制方法参数多、整定难的问题,利用PB神经网络的反向传播算法作为优化机制,减小 ADRC 控制性能对其控制参数的依赖性,增强控制器的控制性能。基于项目研究,构建新型电机系统设计优化与运行控制理论体系,研制工程样机和驱动控制装置,奠定实用基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
调焦系统高转矩密度盘式直驱永磁游标电机研究
低速大转矩永磁电机伺服系统集成设计关键技术研究
基于双绕组永磁容错电机的高可靠电驱动系统关键技术研究
高功率密度双转子永磁容错电机系统的理论及关键技术研究