动态电磁场唯一性定理中的若干关键理论问题

基本信息
批准号:59977022
项目类别:面上项目
资助金额:14.00
负责人:雷银照
学科分类:
依托单位:北京航空航天大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:吴静,刘本田,吴素文
关键词:
电磁场唯一性定理边值问题
结项摘要

Former description about the uniqueness theorem of electromagnetic fields is not perfect. Firstly, it doesn't concern characteristics of mediums. Secondly, the description about tangent interface conditions doesn't coincide with practical situation. Thirdly, according to the theorem, it is difficult to write out the formulation of electromagnetic field initial-boundary value problem directly. To solve these problems, this project studies the basic theory of electromagnetic field initial-boundary value problem and its analytic methods systematically. The uniqueness theorem of dynamic electromagnetic fields applying to linear multi-medium region and the uniqueness theorem of transient eddy current are gotten. On the basis of them, the analytical expression to impedance for the coil above conductive and permeable medium that have a variable permeability, and the analytical expression to inductance for the coil with ferrite core of finite length are derived. A monograph, Analytical methods for time-harmonic electromagnetic fields, which is published by Science Press and is supported by the Science Publication Foundation of CAS(the Chinese Academy of Sciences), includes some of these achievements. In addition, three papers on important publications, and two papers on other journals include other achievements. After searching many documents, it is found that all these achievements appear for the first time. These achievements have plenty of scientific significations. Firstly, according to new uniqueness theorem, the formulation of electromagnetic field initial-boundary value problem can be written out directly and blind try is avoided. Secondly, using the improved uniqueness theorem, the formulation of boundary value problem expressed by vector magnetic potential is simplified and the complexity in solving the problem is reduced. Thirdly, these achievements develop the basic theory of electromagnetic field boundary value problem.

以往表述的动态电磁场唯一性定理尚存不足:它没有限定媒质特性,对切向边界条件的描述与实际使用状况不符,难于根据该定理写出电磁场初边值问题表达式。本项目拟针对以上问题展开研究,探讨不同媒质中解的唯一性条件,并希望得到动态电磁场问题的初边值问题表达式。此项研究可进一步完善电磁场边值理论,在理论和应用上具有较大意义。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

分数阶微分方程奇异系统边值问题正解的存在性

分数阶微分方程奇异系统边值问题正解的存在性

DOI:10.13718/j.cnki.xdzk.2019.04.015
发表时间:2019
2

Ordinal space projection learning via neighbor classes representation

Ordinal space projection learning via neighbor classes representation

DOI:https://doi.org/10.1016/j.cviu.2018.06.003
发表时间:2018
3

基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料

基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料

DOI:
发表时间:2021
4

基于镜像映射原理的LNG液舱压力维持系统${H_infty }$优化控制

基于镜像映射原理的LNG液舱压力维持系统${H_infty }$优化控制

DOI:10.13195/j.kzyjc.2018.0662
发表时间:2020
5

带有积分边值条件的分数阶微分包含解的存在性

带有积分边值条件的分数阶微分包含解的存在性

DOI:10.11845/sxjz.2019088b
发表时间:2020

雷银照的其他基金

批准号:50777002
批准年份:2007
资助金额:32.00
项目类别:面上项目
批准号:51577004
批准年份:2015
资助金额:68.00
项目类别:面上项目
批准号:50377002
批准年份:2003
资助金额:20.00
项目类别:面上项目
批准号:51077002
批准年份:2010
资助金额:37.00
项目类别:面上项目

相似国自然基金

1

波能利用工程中的若干关键理论问题及其应用的研究

批准号:50075015
批准年份:2000
负责人:闻邦椿
学科分类:E0503
资助金额:20.00
项目类别:面上项目
2

生物物理中若干理论问题的探索

批准号:19377201
批准年份:1993
负责人:郝柏林
学科分类:A24
资助金额:6.00
项目类别:专项基金项目
3

小波分析中的若干理论问题

批准号:10171050
批准年份:2001
负责人:周性伟
学科分类:A0205
资助金额:12.00
项目类别:面上项目
4

R(N)中调和分析的若干理论问题

批准号:19071012
批准年份:1990
负责人:陆善镇
学科分类:A0205
资助金额:1.50
项目类别:面上项目