The rear under-run protection devices (RUPD) for heavy truck, which could effectively decrease the injuries in the event of under-run, has become a focus in current commercial vehicle research. Most of the existing RUPDs, however, are rigidly mounted on the frame, which means it is hard to satisfy very well the required strength, stiffness, impact location, and the trafficability of heavy trucks. The objective of this project is to design the intelligent integrated rear under-run protection system for heavy truck based on the multi-coupling bionics theory, in driver-vehicle-environment (DVE) coupling system, through combining vehicle engineering and bionic engineering. According to the biological coupling theory, the coupling mechanism of the DVE system is to be analyzed and the intelligent rear-end collision warning strategies based on multi-source information fusion are to be established. By imitating the stress response of creatures, the electromechanical active control system is to be designed, which could intelligently adjust the bumper automatically in light of the risk states. The mechanism of good capacities of energy absorption and structural strength of sheep horns are to be studied and a multi-coupling bionic model covering shape, materials, structure, configuration and function is to be established. On the basis of both the macroscale and microscale structures of sheep horns, a new concept of bumper is to be designed and an intelligent RUPD integrating active and passive safety is to be built so that the vehicle performance could be multi-objective collaborative optimized. Within the implementation of this project, a set of new bionic design system for vehicle safety system will be explored, which will effectively reduce the injuries and deaths when the accident occurs and greatly optimize the performance of DVE system.
重型汽车后防护系统能够有效减少乘用车与重型汽车追尾钻入事故所造成的损伤,是当前商用车研究领域的热点和前沿。但现有后防护装置大都与车架刚性连接,难以实现阻挡刚度、碰撞相容性及整车通过性的协同优化。本项目拟通过仿生工程与车辆工程的学科交叉,以人-车-环境耦合系统为研究对象,采用多元耦合仿生理论设计重型汽车智能集成后防护系统。通过生物耦合理论对人-车-环境系统进行耦合机理分析,建立多源信息融合智能安全预警策略;模拟生物应激反应设计机电一体化主动控制系统,根据风险状态智能调节后防护装置;探索羊角良好吸能特性及结构强度的形成机制,构建形态-材料-结构-构型-功能一体化多元耦合仿生模型,设计仿羊角跨尺度特性后保险杠,建立完整的重型汽车主被动智能集成后防护系统,实现整车性能多目标协同优化。本项目的开展,将探索出一套全新的汽车安全系统仿生学设计体系,有效减少交通事故伤亡,全面优化人-车-环境闭环系统性能。
重型汽车后防护系统能够有效减少乘用车与重型汽车追尾钻入事故所造成的损伤,是当前商用车研究领域的热点和前沿。但现有后防护装置大都与车架刚性连接,难以实现阻挡刚度、碰撞相容性及整车通过性的协同优化。本项目通过仿生工程与车辆工程的学科交叉,以人-车-环境耦合系统为研究对象,采用多元耦合仿生理论设计了重型汽车智能集成后防护系统:(1)仿生物感知功能,构建了人-车-环境多源信息采集系统,对驾驶人使用模式信息、本车状态信息、交通车辆信息和道路环境信息等进行了获取及数据融合,以此为基础,建立了重型汽车仿生智能安全预警机制;(2)综合分析影响重型汽车后防护装置阻挡刚度、碰撞相容性以及整车通过性的耦元因素,自主设计了多种类型的重型汽车后防护装置主动控制执行机构,并建立了相应的控制策略;(3)通过试验研究与理论分析相结合的方法对羊角进行了宏观、微观跨尺度特性分析,构建了形态-材料-结构-构型-功能一体化多元耦合仿生模型,设计了仿羊角跨尺度特性重型汽车后防护装置;(4)进行了系统仿真分析、台架试验与控制原型测试,结果表明,本项目所设计的重型汽车智能集成后防护系统可实现系统智能化和多功能因素优质集成,可以在保证重型汽车通过性的同时,提高安全性能,降低交通事故造成的伤害。.通过本项目的研究,建立了一套全新的汽车安全系统仿生学设计方法,创新设计了一套新型的重型汽车主、被动智能集成后防护系统,全面提升了车辆安全系统的综合性能。项目运行期间,共发表学术论文22篇,已录用学术论文2篇,其中SCI检索论文8篇,EI检索论文16篇,荣获SAE 2017 Intelligent and Connected Vehicles Symposium 最佳论文1篇;申请发明专利15项,其中授权发明专利5项;培养博士生3名,硕士生9名,荣获吉林省优秀硕士学位论文2篇,吉林大学优秀硕士学位论文6篇;以本项目为基础进行拓展研究,项目申请人还先后申请获得国家自然科学基金面上项目1项和国家重点研发计划课题1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
木薯收获机械多元耦合仿生块根拔起系统设计方法
基于生物耐磨原理的仿生多元耦合材料磨损机理研究
基于鸟类翅膀的多元耦合仿生叶片协同降噪机理研究
基于脑机接口的智能假肢直觉仿生操控理论及关键技术研究