The recording of neuronal activities at cellular level has play an important role in the brain mapping and the research of complex neurological diseases such as Parkinson's. Although the specific neurons in neural circuits can be identified by mature fluorescent labelling methods, the electrophysiological recording tools such as patch clamp pipettes can only be labeled by limited technical methods. The reported methods for pipette visualization still need many improvements on fluorescent stability and fabrication repeatability, which means it is imperative to develop more appropriate fluorescent markers. In this project, we innovatively proposed a fluorescent labeling method based on Parylene-C. Utilizing the enhanced fluorescent intensity of Parylene-C, the thin film coated pipettes could be identified under different channels of fluorescent microscope. The fluorescent pipettes could achieve a precisely controlled conformal coating along with a mass production capability, based on the mechanism of fluorescence enhancement and the process model of Parylene-C coating. After the fabrication of the fluorescent pipettes, the recordings of hippocampal neurons could be performed to verify the applicability of targeted neuronal electrophysiology. This project is expected to provide a biocompatible, precisely fabricated (sub-micron scale), long-term stable (over tens days), and mass produced fluorescent labeling method. Moreover, the research achievements may have great theoretical significance and applicable value for revealing the mechanism of Parylene-C fluorescent emission and promoting the innovative fluorescent labeling method in broader fields from neuroscience study to biomedical and real clinical applications.
细胞层级神经活动的记录对构建大脑功能图谱、推进诸如帕金森等复杂神经疾病的研究具有举足轻重的作用。虽然神经回路中的特定神经元可通过生物手段实现荧光表达,但进行电生理记录的膜片钳微电极,由于其尖端尺度等限制,仅能通过有限的方法实现荧光精准定位。已报道的技术在荧光稳定性、加工重复性等方面均存在不足,开发更适用的新型荧光标记方法势在必行。本项目创新地提出一种基于Parylene-C的荧光标记方式,拟利用其自发荧光增强的特性,实现薄膜标记的多通道荧光可见;通过探索其荧光增强的机理和工艺模型,实现微电极的可控、批量制备;并利用小鼠海马区神经元进行电生理记录验证。项目预期提供一种生物兼容、精细加工(亚微米级)、长期稳定(数十天)、可批量制造的新型荧光标记方式。研究成果对于揭示Parylene-C荧光发射的机理,促进新型荧光标记技术在神经科学、生物学及临床医学等领域的应用,具有重要的理论意义和应用价值。
细胞层级神经活动的记录对构建大脑功能图谱、推进诸如帕金森等复杂神经疾病的研究具有举足轻重的作用。虽然神经回路中的特定神经元可通过生物手段实现荧光表达,但进行电生理记录的膜片钳微电极,由于其尖端尺度等限制,仅能通过有限的方法实现荧光精准定位。已报道的技术在荧光稳定性、加工重复性等方面均存在不足,开发更适用的新型荧光标记方法势在必行。本项目创新地提出一种基于Parylene-C的荧光标记方式,利用其自发荧光增强的特性,实现了薄膜标记的多通道荧光可见;通过探索其荧光增强的机理和工艺模型,实现了微电极的可控、批量制备;并利用小鼠海马区神经元进行电生理记录验证。项目提供了一种生物兼容、精细加工(亚微米级)、长期稳定(数十天)、可批量制造的新型荧光标记方式。研究成果对于揭示Parylene-C荧光发射的机理,促进新型荧光标记技术在神经科学、生物学及临床医学等领域的应用,具有重要的理论意义和应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
光电极及其在神经电刺激与记录中的应用基础研究
用于治疗足下垂的新型功能电刺激技术及其神经机理研究
静息态脑功能网络的神经电生理基础研究
新型磁性荧光纳米药物的构建及其肿瘤精准高效光热治疗研究