Development of highly efficient energy conversion technologies is of great importance to address energy depletion and pollution issues. Photosystem II protein complex (PSII), which is able to utilize visible light to split water, has been widely used in research on novel solar energy conversion systems. However, further improvement of the efficiency of PSII based energy conversion systems is severely limited by the factors such as narrow band utilization and orientation controlled electronic output. In view of the above issues, the current project proposes to use molecular assembly in combination with fluorescence resonance energy transfer to achieve high load of PSII on the electrode surface as well as its oriented assembly and highly efficient light harvesting, for improving the photoelectric conversion efficiency of the system. Carrier nanoparticles will be firstly synthesized by coprecipitation method. The fluorescent materials and PSII will be directionally connected on the surface of the carrier via electrostatic or covalent interaction. The effect of the connection between them and relevant factors on the fluorescence resonance energy transfer process will be investigated in order to broaden the band utilization. The PSII based hydrogel modified electrode will be eventually achieved by co-assembly of the composite particles with redox active polymers onto the electrode surface. The influence of the particle size and relevant factors on photoelectric properties will be systematically investigated. The relationship between the fluorescence resonance energy transfer process and photoelectric properties will be uncovered. This proposal provides a promising strategy and important experimental support for the construction of highly efficient PSII based solar energy conversion systems.
发展高效清洁的能源利用与转化技术,对于解决能源枯竭与环境污染问题具有重要意义。光系统II蛋白复合物(PSII)能够利用可见光分解水,已被广泛用于新型太阳能转化体系的研究,然而诸如光谱利用范围窄、电子输出受取向控制等因素限制了体系光电转换效率的进一步提高。针对上述问题,本项目拟利用分子组装方法,借助于荧光共振能量转移,在电极表面高负载PSII的同时,实现其定向组装及高效捕光,以提高体系光电转换效率。拟利用共沉淀法制备载体颗粒,通过静电或共价键作用实现荧光基元与PSII在载体表面的定向连接,重点研究二者连接方式等因素对荧光共振能量转移的影响规律,以拓宽光谱利用范围。将上述复合颗粒与氧化还原聚合物共组装于电极表面,获得PSII高负载的水凝胶修饰电极,系统研究颗粒尺寸等因素对光电性能的影响,揭示荧光共振能量转移与光电性能之间的关系规律,为构建高效PSII基太阳能转化体系提供新的策略和重要实验依据。
发展高效清洁的能源利用与转化技术,对于解决能源枯竭与环境污染问题具有重要意义。光系统II蛋白复合物(PSII)能够利用可见光分解水,已被广泛用于新型太阳能转化体系的研究,然而诸如光谱利用范围窄、复合组装体负载率低以及稳定性差等因素限制了体系光电转换效率的进一步提高。本项目利用分子组装方法,借助于荧光共振能量转移,在电极表面高负载PSII的同时,拓宽了体系的捕光范围,提高了体系的光电转换效率。项目执行期间,主要研究进展如下:采用绿色简便的水相合成方法,以不同前驱体制备了具有高荧光效率且波长可调的多种量子点;分别采用层层组装方法和一步法共组装将上述量子点和氧化石墨烯与PSII共组装到电极表面形成复合膜,详细研究了复合体系的光电转换性能,初步探讨了利用辐射能量传递来提高体系光电转换效率的可能性;同时,开展了喷涂法层层组装的探索, 研究了不同组装条件下多层膜的生长行为。本工作为高效PSII基太阳能转化体系的构建提供了新的策略和实验依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
结核性胸膜炎分子及生化免疫学诊断研究进展
原发性干燥综合征的靶向治疗药物研究进展
基于Pickering 乳液的分子印迹技术
动物响应亚磁场的生化和分子机制
Wnt 信号通路在非小细胞肺癌中的研究进展
光系统II超分子体系的蛋白脂质体组装及其结构与功能研究
光系统II复合物组装调控的分子机理
可溶性铂(II)配合物自组装体系的开发及其发光性能研究
缺电型π-共轭体系的构建、自组装及其性能研究