Electromagnetically induced transparency(EIT) as a thrilling and counterintuitive phenomenon has received much attention due to its interesting physics and potential applications such as the transfer of quantum correlations and slow light propagation in nanoscale devices. The concept of EIT later extended to classical optical systems by using plasmonic metamaterials, due to the unique optical properties of EIT-like in metamaterials result from interaction and coupling of light with periodic particle. .Optical control of EIT-like in metamaterials promises essential application opportunities in optical networks in recent years . The specific geometry and arrangement of nano-scale inclusions in metamaterials can result in enhanced plasmon resonance, especially the localized surface plasmon resonance or surface plasmon polariton (SPP) resonance, which is one of essential conditions for realizing high transmission EIT-like resonance..Graphene, an attractive carbon material, becomes a hot material in both physics and engineering on account of its exotic properties, such as optical transparency, flexibility, high electron mobility. Graphene-based plasmonic nanostructures provide smaller losses and highly confined plasmonic modes that can be tuned synchronously and locally via chemical doping or electrical gating. These make graphene is recognized as an excellent candidate for designing tunable, fast, and compact active plasmonic devices. .In this project, we proposed active plasmonic device based on doped graphene metamaterial. Expect to find that (1) an increase of the Fermi energy level can result in a significant shift of outcoming light property without changing the structure of the device;(2) new mechanisms for producing EIT-like effect; (3) fantastic characteristics for the propagation of electromagnetic waves in plasmotic structure; (4)new category of photonic device. .It may be helpful for the designing of new functional nano-photonic devices and may pave the way towards ultrafast active graphene-based plasmonic devices.
光学介质谐振腔中的类电磁诱导透明(EIT-like)效应在慢光调节、超快光开关、量子存储等领域具有广泛应用。利用石墨烯超材料的结构特性、强局域特性和高载流子迁移特性不仅可以获得更显著的EIT-like现象,而且可以实现光的速度和光谱特性动态调控,继而设计出纳米尺度可调谐超快光电子器件。本项目计划:.(1)利用空间耦合波模型,研究对称/非对称石墨烯超材料结构中EIT-like的产生机理及结构对称偏移量、石墨烯电导率等对效应产生的影响。(2)设计易于产生和调制EIT-like的基于超材料的新结构,如层叠排列结构。(3)分析新结构在调制下产生的慢光控制、超快光响应等物理特性。(4)研发基于以上结构和特性的折射率传感器、太赫兹波段滤波器、光子逻辑器等超快新器件。.本项目意在探索光子调控的机理,揭示人工材料的新特性,开发性能优异的新器件,为下一步新型微纳光子器件开发打下良好基础。
项目背景:类电磁诱导透明效应在慢光调节、超快光开关、量子存储等领域具有广泛的应用。利用石墨烯超材料的强局域与表面等离子体的共振作用不仅可以获得更显著的类电磁诱导透明现象,同时在石墨烯超材料的动态调控下,表面等离子体器件可以实现在一定范围内调控光的速度和出射特性,继而可以设计出可调谐超快光子器件。.研究内容:(1)研究了对称/非对称石墨烯超材料结构中类电磁诱导透明效应的产生机理及结构对称偏移量、石墨烯电导率等对效应产生的影响。(2)设计了易于产生和调制类电磁诱导透明效应的超材料的新结构。(3)分析了新结构中慢光控制、超快光响应的物理机制。(4)研发了基于以上结构和特性的折射率传感器、太赫兹波段滤波器、光子逻辑器等超快新器件。(6)在以上研究的基础上,进一步探索了在其它人工微结构中进行光场调控的新机理、新功能、新器件。.研究成果:获得了石墨烯超材料中类电磁诱导透明效应的产生及调控的物理机制,弄清了石墨烯超材料的结构参数对光场分布的影响规律,以及石墨烯超材料的电导率对电磁场分布特性的影响规律。在此基础之上,设计并验证了多种不同结构的石墨烯超材料可调谐光子器件。在滤波器、慢光器件、及传感器等领域具有潜在应用前景。本项目共发表SCI论文66篇,其中二区以上41篇;授权发明专利4项,实用新型专利3项;培养硕士生39人;.科学意义:上述研究结果揭示了石墨烯超材料中类电磁诱导透明效应的产生及调控机制,探索了在人工微结构中进行光场调控的新机理、新功能、新器件,为进一步开发出理想的超快可调谐集成光子器件打下了良好基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
基于二维材料的自旋-轨道矩研究进展
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
基于类电磁诱导透明效应的高性能石墨烯全光调制器件研究
基于石墨烯与超表面融合机制的透明与柔性微波器件研究
太赫兹介质超构表面类电磁诱导透明研究
太赫兹石墨烯超材料电磁特性的超快响应机理及功能器件研究