Recently, due to its distinctive and intriguing optical and electronic properties, graphene has been widely employed in integrated optical modulators. However, because previous reports were in general based on electro-absorptive loss modulation, and unfortunately the intrinsic light absorption of monolayer graphene is as low as 2.3%, and hence high-performance graphene optical modulator remains a big challenge. This project will investigate high-performance all-optical graphene modulators operating in mid-infrared regime by exploring new properties in cross fields of graphene, surface plasmons, metamaterials, and quantum interference. This project will propose a new mechanism, similar to a famous quantum interference effect called electromagnetically induced transparency (EIT), and also a new technique to realizing all-optical graphene modulators, which aims at breaking through the technical bottleneck of traditional electro-absorptive loss modulation and greatly improving the modulation depth and modulation speed of mid-infrared graphene modulators. Firstly, the phase-coupling interference for EIT-like generation in graphene metamaterials will be explored. Secondly, all-optical control technique of EIT-like effects in graphene metamaterials will be investigated. Thirdly, high-performance, mid-infrared, all-optical graphene modulators will be developed on the basis of graphene EIT-like metamaterials. Finally, the performance of the proposed all-optical graphene modulators will be completely characterized and evaluated.
近年来,石墨烯因其独特而迷人的光学和电学性质被广泛应用于集成光学调制器的研究中。但是由于先前的研究普遍基于电吸收损耗调制机理,而单层石墨烯的本征光吸收损耗仅为2.3%,因此高性能石墨烯光调制器仍面临巨大挑战。本项目通过探索研究石墨烯、表面等离激元、超材料、以及量子干涉等交叉领域,构建工作在中红外波段的高性能石墨烯全光调制器件。拟提出一种利用类似原子系统中“电磁诱导透明(EIT)”量子干涉效应实现石墨烯全光调制器件的新机理和新技术,旨在突破传统电吸收损耗调制的技术瓶颈、极大程度地提高中红外石墨烯调制器的调制深度和调制速率。首先,研究利用相位耦合干涉构建石墨烯超材料产生EIT-like效应的物理机制;其次,研究石墨烯超材料中EIT-like效应的全光调控技术;然后,研制基于石墨烯EIT-like超材料的高性能中红外石墨烯全光调制器;最后,对石墨烯全光调制器件的性能进行全面表征与测试。
近年来,石墨烯因其独特而迷人的光学和电学性质被广泛应用于集成光学调制器的研究中。但是由于先前的研究普遍基于电吸收损耗调制机理,而单层石墨烯的本征光吸收损耗仅为2.3%,因此高性能石墨烯光调制器仍面临巨大挑战。基于此,本项目将石墨烯微结构等离激元共振与超构材料相结合,开展了类电磁诱导透明效应新机理与新技术研究,构建了基于相位耦合机制的石墨烯超构材料与器件模型,建立了多层相位耦合石墨烯超构表面的传输矩阵理论模型,设计了一种基于相位耦合类电磁诱导透明效应的超高调制深度石墨烯全光调制器;实现了基于类石墨烯二维材料、全光纤体系的超高速全光调制器件,并将其应用于超短脉冲激光的产生;设计了多种基于片上波导结构的高集成度、高性能的集成光学滤波器;探索了光纤端面集成金属超构表面器件的加工工艺。研究成果为高集成度、高性能全光调制器件的设计与研制奠定了基础,提供了新思路和方向。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
石墨烯超材料中类电磁诱导透明的产生调控与器件设计
全石墨烯电极柔性透明有机发光器件研究
关于石墨烯全光调制机理和调制特性的研究
片上高Q光学微腔与石墨烯复合结构的全光调制器件研究