Brucellosis is seriously harmful to public health. There is no effective preventions and treatments. Brucella can avoid the degradation of lysosomes after its infection which is the main strategy for intracellular surviving. However, the mechanism is largely unclear. Recently, it has been reported that TECPR1 binds to the Atg12-Atg5 conjugate and phosphatidylinositol 3-phosphate (PI3P) to promote autophagosome-lysosome fusion. Our previous work found that Brucella induced autophagy of Macrophages but inhibited the degradation of autolysosome pathway, and the expression of ATG5 is significantly down-regulated. We propose a hypothesis that Brucella infection inhibite the formation of Atg12-Atg5 conjugate and the interaction between PI3P and TECPR1,by which inhibite the function of TECPR1 on inducing membrane fusion. Our study is supposed to elucidate the mechanism of the escape of lysosomes degradation after Brucella infection by RNAi,subcellular colocalization and so on. Our study is supposed to explore a new therapeutic target for Brucellasis.
布鲁氏菌病严重危害公共卫生安全,目前尚无有效防治手段。布鲁氏菌侵染巨噬细胞后能阻滞自噬溶酶体降解途径,是布鲁氏菌能够在胞内生存繁殖的重要原因,然而其机制尚不清楚。最新研究发现自噬相关蛋白复合物ATG5-ATG12可促使TECPR1蛋白PH结构域暴露,PH结构域和PI3P的结合可激活TECPR1蛋白促自噬体和溶酶体融合的活性。我们前期的研究发现:布鲁氏菌16M(简称16M)虽然激活巨噬细胞自噬,但阻滞自噬溶酶体降解途径,在此过程中 ATG5表达量显著降低。由此推测16M逃避被降解的机制:通过下调ATG5表达量破坏了ATG5-ATG12蛋白偶联体,阻碍了PI3P与TECPR1蛋白的结合,从而抑制TECPR1蛋白发挥促膜融合作用。本项目拟利用免疫共沉淀、RNA干扰、亚细胞定位等研究手段揭示布鲁氏菌逃避溶酶体降解的分子机制,为布鲁氏菌病的治疗提供潜在的药物靶标。
布鲁氏菌病(Brucellosis)简称布病,是由布鲁氏菌属(Brucella)的布鲁氏菌侵入机体,引起的一种慢性人畜共患传染病病。该病在世界范围内广泛流行,严重危害公共卫生安全,并造成畜牧业经济巨大损失。巨噬细胞是布鲁氏菌感染的首要宿主细胞,布鲁氏菌感染巨噬细胞后可以激发不依赖 Atg5 (Autophagy related gene 5)的自噬,且逃避其溶酶体的降解。自噬相关蛋白 Atg5 和膜融合相关蛋白 Tecpr1 (Tectonin domain-containing protein)的结构域 AIR (Atg12-Atg5-interacting region)在促进自噬体与溶酶体的融合中有着重要作用,但在布鲁氏菌诱导的自噬中这两种蛋白的作用尚不清楚。探究 Atg5 和 AIR 结构域对羊种布鲁氏菌 16M 感染小鼠巨噬细胞 RAW264.7 引起的非典型自噬中自噬体与溶酶体的融合及对 16M 胞内生存繁殖能力的影响。这为我们进一步研究布鲁氏菌通过哪种途径阻滞自噬体与溶酶体的融合从而在宿主细胞内持续生存的相关机制奠定了实验基础。. 本课题研究发现在布鲁氏菌 16M 感染 RAW264.7 细胞诱发的非典型自噬中,过表达 Atg5和沉默 AIR 会通过促进自噬体与溶酶体的融合,在一定程度上降低布鲁氏菌在宿主细胞内的生存能力。这为我们进一步研究布鲁氏菌通过哪种途径阻滞自噬体与溶酶体的融合从而在宿主细胞内持续生存的相关机制奠定了实验基础。16M能够通过ROS途径诱导细胞发生凋亡; 16M侵染后,ROS可引起细胞发生凋亡、炎症和自噬。AIR可以抑制自噬小体成熟和自噬的发生。自噬负调控炎症小体激活,并抑制炎症反应的发生;线粒体自噬可促进细胞的凋亡。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
MiR-508-3p由p53介导表达的可能机制及其靶向CCNA2及下游信号调控卵巢癌增殖、周期及凋亡
布鲁氏菌感染巨噬细胞诱导的自噬抑制细胞凋亡的分子机制研究
PhoP/PhoQ介导禽致病性大肠杆菌抑制巨噬细胞自噬-溶酶体降解途径的分子机制
miRNAs对肺泡巨噬细胞自噬溶酶体成熟及抗结核分枝杆菌感染的调控机制
Wnt/β-catenin信号对结核分枝杆菌感染后巨噬细胞自噬调控机制研究