Sulfonamide antibiotics are frequently detected in influents and effluents of wastewater treatment plants, and it is a promising approach to degrade them efficiently and stably with electrocatalytic membrane anodes. Benefiting from the catalytic property of metal oxide and the contribution of adsorption on carbon, metal oxide-carbon composite electrocatalytic membranes are potential candidates, but the degradation efficiency and stability are hindered by the corrosion of carbon, the ununiformed dispersion of metal oxides as well as the low availability of surface area. In this project, it is proposed to construct mesoporous Ti4O7-boron doped carbon electrocatalytic membranes employing a mesoporous titanium-based MOF meso-MIL-125(Ti) as the precursor. By employing the mesoporous MOF precursor, the dispersion of Ti4O7 can be promoted in-situ and the availability of surface area can be increased through the in-situ introduction of mesopores. Meanwhile, by boron doping, the stability of the membrane can be increased and the adsorption of sulfonamides can be enhanced. This project firstly aims to establish an approach to fabricate Ti4O7-boron doped carbon electrocatalytic membranes with controllable properties and to illustrate the effect of mesopores and boron-doping on the degradation mechanism of sulfonamide on the electrocatalytic membrane with the help of theoretical calculations. After that, we will establish and optimize a systematic process to degrade sulfonamides and analyze the effect of key environmental factors on the degradation performance. Finally, the degradation of sulfonamides with high efficiency and stability will be realized.
磺胺类抗生素在污水处理厂进出水中高频检出,利用阳极氧化电催化膜实现其高效稳定降解具有广阔的应用前景。金属氧化物-碳复合电催化膜可利用氧化物的催化性和碳的吸附性协同促进降解,但碳易腐蚀、氧化物分散不均和比表面积利用率低等问题限制了电膜稳定性和降解效率。本项目提出以介孔钛基MOF材料meso-MIL-125(Ti)为前驱体构建介孔Ti4O7-硼掺杂碳复合电催化膜,利用MOF前驱体原位促进Ti4O7的分散并引入介孔以提高比表面积利用率,利用硼掺杂提高电膜稳定性并强化对磺胺类抗生素的吸附效果。拟建立Ti4O7-硼掺杂碳电催化膜的可控制备方法,结合理论计算阐明介孔和硼掺杂在电催化膜降解磺胺类抗生素过程中的作用机理,建立优化系统工艺并解析关键环境因子对降解性能的影响规律,最终实现基于Ti4O7-硼掺杂碳电催化膜的磺胺类抗生素高效稳定降解。
磺胺类抗生素等有机污染物在水环境中高频检出,利用催化膜技术实现其高效稳定降解具有广阔应用前景。本项目围绕水中磺胺类抗生素等有机污染物的高效脱除,以提高污染物降解效能为目标,制备了四氧化三钴-氧化铋-钛催化膜及亚氧化钛催化膜,优化系统工艺并解析了pH、无机盐、天然有机物等水质条件对降解效能的影响规律,阐明了降解过程中吸附、自由基氧化和非自由基氧化的贡献和耦合机理,考察了催化膜稳定性并探究了膜性能恢复方法和机制。制得的钛基催化膜可高效稳定降解水中磺胺类抗生素等有机污染物,有望应用于水中有机污染物的降解脱除。同时,结合密度泛函理论计算,阐明了磺胺类抗生素等有机污染物的降解路径,探究了降解产物的环境毒性效应,为催化膜过程的实际应用提供了参考。
{{i.achievement_title}}
数据更新时间:2023-05-31
莱州湾近岸海域中典型抗生素与抗性细菌分布特征及其内在相关性
湖北某地新生儿神经管畸形的病例对照研究
污染土壤高压旋喷修复药剂迁移透明土试验及数值模拟
人β防御素3体内抑制耐甲氧西林葡萄球菌 内植物生物膜感染的机制研究
粉末冶金铝合金烧结致密化过程
Ag3PO4/MoS2/TiO2纳米管新型复合电极的制备及其光电催化降解水中磺胺类抗生素的机理研究
电增强碳纳米纤维吸附饮用水中磺胺类抗生素的影响机制研究
光热效应对单质硼复合光催化剂降解磺胺类抗生素的增效机制研究
自然光催化及湿式催化氧化降解磺胺类抗生素降解产物及降解机理的对比研究