The “wave-matter” interactions in metamaterials can realize the high-efficiency energy coupling between electromagnetic waves and structural mechanics, and can be used to control simultaneously the incident electromagnetic waves and the mechanical micro-structures, opening a new research direction named optomechanical metamaterials and having the opportunity for the applications of frequency source generation, sensing and navigation. However, the currently reported optomechanical metamaterials suffer from the low opto-mechanical coupling rate and high power consumption problems, and lake of composing methods for microwave and millimeter wave ranges, which have been the barriers for the developments and practical applications. This Proposal is aim to investigate systemically the realization mechanisms, design methods and fabrication technologies, applications of a new kind of optomechanical metamaterial based on the flexible substrate operated at microwave and millimeter wave ranges. By using electrodynamics theory, structural mechanics theory, thermal theory, and the multi-physical coupling theory, this Proposal will theoretically analyze the opto-mechanical coupling mechanism and controlling method of the proposed optomechanical metamaterial based on the flexible substrate, and establish the high opto-mechanical coupling relationship model. The Proposal will also investigate the modelling method for the high-Q electromagnetic resonance and mechanical oscillation characteristics of the optomechanical metamaterials. The Proposal will then design and fabricate the low-cost optomechanical metamaterials operated at microwave and millimeter waves, and experientially investigate the optomechanical cooling, amplification, oscillation, induced transparency, etc. The Proposal finally explore the applications of optomechanical metamaterials in microwave and millimeter wave circuit/components and sensors. After achieving the research goals, the Proposal will develop and build the research and application frames for the novel optomechanical metamaterials. It has very important scientific meaning and significant engineering values.
超材料中“波-物质”互作用使电磁波能与机械能产生高效耦合,实现电磁波和机械结构联动调控,据此可发展出光机械超材料技术研究新方向,并推动超材料广泛用于频率源、传感、导航等技术领域。目前光机械超材料存在光机械耦合效率低、功耗大等问题,并缺乏在微波毫米波频段的合成方法,极大地限制了其发展与应用。本项目旨在突破基于柔性介质的微波毫米波频段光机械超材料合成机理、设计方法、制备技术、应用途径及方案。项目综合应用电动力学、结构力学、热学理论及多物理场耦合理论,研究基于柔性介质的光机械超材料能量耦合机理及控制途径,建立光机械强耦合关系模型,分析光机械超材料高Q值电磁谐振、机械振荡特性,设计微波毫米波频段低功耗光机械超材料,实验研究其光机械冷却/放大/振荡/诱导透明等物理现象,探索光机械超材料在新型微波毫米波电路、器件与高精度传感等领域的应用技术方案,最终形成微波毫米波频段光机械超材料研究与应用技术体系。
本项目完成了基于FPC平面吸波结构的光机械超材料工作机理、结构设计方法等研究,分析这种光机械超材料的电磁谐振特性及电磁感应力等产生机理及效应,光机械超材料机械振子在电磁感应力作用下的机械位移机理及振荡特性、光机械耦合作用下的多稳态非线性现象、产生光机械振荡的功率阈值等问题。其次基于上述光机械超材料采用全波电磁仿真方法、机械位移及振荡特性的数值仿真方法,建立电磁波能与热能、热能与机械动能,以及电磁波能与电磁感应力产生的机械动能之间耦合关系模型,进行光-机械模式耦合一体化理论分析、数值仿真与设计验证的系统。研究了这种光机械超材料的制备工艺及技术,以及光机械超材料电磁特性、机械特性的测试方案;实验研究光机械超材料的光机械耦合率、光机械振荡功率阈值等。然后,研究了不同频率电磁波作用下前述光机械超材料的光机械冷却与放大机理及特性,光机械振荡响应时间、机械振荡频率与入射电磁波频率及强度之间的非线性关系理论模型,以及相应的数值仿真和物理实验验证方法。研究上述光机械超材料设计原型中不同金属谐振单元种类、金属谐振单元与金属地平面间不同距离对超材料电磁谐振 Q 值、光-机械能量耦合效率的影响规律,研究FPC介质厚度、金属谐振环厚度、金属地平面厚度对机械模式、机械谐振Q值的影响规律,发展出高电磁谐振Q值、高机械谐振Q值、高光-机械耦合效率的光机械超材料性能提升结构。本项目在研究期间,先后发表(含已录用)受项目资助的学术研究论文成果53篇,其中SCI收录期刊论文29篇(中科院JCR分区二区及以上15篇),特邀报告4次;参编英文专著一章,申请发明专利7项,获得授权2项。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
硬件木马:关键问题研究进展及新动向
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于二维材料的自旋-轨道矩研究进展
PDMS基底微纳结构超材料柔性位移传感机理及应用研究
基于柔性超材料的环偶极子太赫兹电磁响应特性及功能器件研究
Mie谐振电介质颗粒超材料热辐射特性的机理研究
介质超材料中光机械诱导非线性现象的理论与实验研究