As a minimum, the most important geometric measurement, accurate and convenient measurement of displacement sensing in the field of engineering technology has important significance. Otherwise, in environment test, lots of conventional displacement transducers aren’t suitable, for example aimed to measure the displacement in the interlayer structure of weapon, because the volume of sensor is too large to install, or the test plane of narrow interlayer must be dealed with. So this project proposes a new method for measuring the displacement. This method uses an organic polymer PDMS soft substrate, and it is deformable, and can be directly attached to the object which will produce displacement. By taking advantage of surface plasmon polaritons and metamaterial theory, the micro/nano structures can be designed and fabricated on the PDMS, when the object moves, the PDMS will be deformed by the moving of object, so the spatial location of micro/nano structures will be changed also, which will modulate the output lightwave’s characteristics. After measuring the output characteristics (like frequency or amplitude, etc), the object’s displacement can be sensed and measured. The structure of sensor is compact, and the measuring system is simple also. The displacement sensing unit is light weight, small size, and without any external leads, otherwise, the whole unit can be a good match with the measured object. Because of the artificial metamaterials design features and PDMS strong flexibility, this sensor can be adapted to different measurement ranges. In this project, we will study the displacement sensing mechanism for flexible metamaterials, the matching relationship between the substrate material and the micro/nano metal structures, respectively. With focused ion beam etching, and other modern nanofabrication technologies, the sample will be made, and we will set up the near and far field measurement systems and conduct the experiment deeply. This new displacement sensing method will be of great significance in practical applications.
作为最基本、最主要的几何量,位移传感测量在工程技术领域有重要意义。本项目提出了一种全新的位移传感测量方法。利用有机聚合物PDMS的柔软可变形性直接贴附在被测物体上感受物体的位移变化,同时利用微纳加工技术和表面等离子激元理论,在PDMS基底上设计、制备金属微纳结构超材料,使得物体位移量转化为PDMS的变形量,进一步引起超材料微纳结构的空间变化,通过探测经过超材料调制后出射光波的特性(频率振幅等),完成对位移量的传感测量。该方法的位移传感单元质量轻、体积小、无任何外接引线、可以与被测物良好匹配,并且因为超材料的人工设计特性和PDMS的强柔韧性,可适应不同的测量量程。项目主要研究柔性基底超材料位移传感机理、柔性基底材料与金属微纳结构的匹配、位移传感单元的微纳制备和进行原理性位移测量实验。研究不仅对柔性基底超材料研究有重要理论和实际指导意义,而且将发展一种全新的位移量测量方法,实际应用前景广泛。
本项目研究了利用有机聚合物PDMS的柔软可变形性直接贴附在被测物体上从而进行位移量测量的可行性。项目首先研究了器件的微纳制备方法,包括利用PDMS印章制备纳米颗粒阵列图形,将图形刻蚀到Si基底上,利用电子束沉积将金属制备到Si基底的图案上,最后将金属纳米颗粒转印到PDMS柔性基底上。其次实验验证了器件在经过机械变形后,透射光谱的分布情况,实验和理论计算结果都表明极化入射光角度为90度时,基底有30%变形后,产生的最大透射光谱频移为72nm。研究不仅对柔性基底超材料研究有重要理论和实际指导意义,而且将发展一种全新的位移量测量方法,在实际应用中具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
基于二维材料的自旋-轨道矩研究进展
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
石墨烯/PDMS复合材料微纳分级结构构筑及防除冰机理研究
基于非对称法布里-珀罗干涉的微位移光纤传感机理及应用研究
亲/疏水交替“微井”点阵SERS柔性基底构建及对痕量农残的超灵敏检测与原位检测应用研究
超疏水贵金属微纳多级结构SERS基底的构筑及三相界面催化过程的原位检测研究