Piecewise-smooth dynamical systems are of theoretical significance and have broad applications in practical problems. The study of piecewise-smooth dynamical systems is a relatively new area in dynamics and control. This project studies the following important problems:1 The geometric properties of invariant manifolds of sub-smooth systems in the vicinity of discontinuity and nonsmoothness boundary and their role in existence of periodic solutions and limit cycles, and new periodic bifurcations. 2 The geometric properties of invariant manifolds of sub-smooth systems and the existence of chaos as well as periodic bifurcations and homoclinic orbits. 3 Establish a theory for invariant sets and invariant submanifolds of composite maps, and study invariant manifolds of piecewise smooth vector fields by means of the composite maps induced by sub-Poincaré maps defined on discontinuity and nonsmoothness boundary and the mechanism of existence of homoclinic points and chaos. The studies of the above problems can reveal the relations between the geometric properties of invariant manifolds of sub-smooth systems in the vicinity of discontinuity and nonsmoothness boundary and existence of chaos as well as periodic solutions and limit cycles, and present a theory for further studies on piecewise-smooth dynamical systems.
分段光滑动力系统理论有很强的应用背景和重要的理论意义,是动力学与控制领域的新兴分支。本项目研究下面几个重要问题:1不连续性以及非光滑性边界附近的光滑子系统的不变流形的特性及其在不连续边界的几何关系导致周期解或极限环存在的问题,以及在两个中心流形不匹配的情况下新的周期解分叉现象。2 三维和四维分段光滑向量场不变流形的特性及其在不连续性边界的几何关系导致混沌存在的机理,尤其是周期轨分叉和同宿轨的存在性,并针对分段仿射系统研究不变流形的结构与周期解及同宿分叉问题。3 发展复合映射的不变集和不变流形理论,并借助于非光滑或不连续性边界诱导的子庞卡莱映射的复合来探讨分段光滑向量场的不变流形,研究同宿点的存在性和混沌产生机制。通过系统地研究上述问题,揭示分段光滑系统的不变子流形的结构和局部子流形在不连续性边界附近的相互关系及其导致周期和混沌动力学行为的机理,以期为深入研究分段光滑系统打下一定的理论基础。
分段光滑动力系统理论有很强的应用背景和重要的理论意义,是动力学与控制领域的新兴分支。本项目研究在以下几个重要方面取得进展:1通过研究不连续性以及切换边界附近的光滑子系统的不变流形的特性及其在不连续边界的几何关系得到了一类分段光滑特别是分段仿射系统周期解或极限环存的充分条件。2 以分段仿射系统为蓝本针对三维和四维分段光滑向量场不变流形的特性及其在不连续性切换边界的几何关系给出了存在同宿轨道和异宿环的充分条件,并对混沌存在的机理和条件给出了深入的讨论,尤其是周期轨分叉和同宿轨的存在性,并针对分段仿射系统研究不变流形的结构与周期解及同宿分叉问题。3以四维的仿射系统为研究模型,系统地 建立了相应系统的复合映射的不变集和不变流形理论,并借助于非光滑或不连续性切换边界诱导的子庞卡莱映射的复合来探讨分段光滑向量场的不变流形,得到了同宿轨以及异宿环的存在性和混沌产生机制。通过系统地研究上述问题,揭示了分段光滑系统的不变子流形的结构和局部子流形在不连续性边界附近的相互关系及其导致周期和混沌动力学行为的机理,为深入研究分段光滑系统理论研究做出了积极的探索。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
分段光滑Filippov系统的动力学研究
光滑与分段光滑退化系统的若干分岔问题
分段光滑隔振系统的动力学行为与设计方法
分数阶分段光滑悬架系统的非线性动力学与控制研究