According to national security and defense requirements in the marine potestatem strategy to solve the urgent line-spectrum vibration problem in the various tasks of USV (unmanned surface vessel, USV), including policing and patrolling, mine detection, submarine detection, information countermeasure, fire attacking, information reconnaissance and information support for naval battle field, the project is around two scientific problems of the dynamics behavior optimization mechanism of vibration isolation system based on dynamic stiffness design and unknown time-varying adaptive active control with strong linear spectrum vibration, a damping and noise reducing system based on nonlinear complex stiffness and electromagnetic actuator has been researched in the project, which is based on our team’s previous research achievements consisting of a series of “Jinghai” surface robots and ultra-low frequency active vibration-reducing system. By illustrating coupling vibration mechanism of USV’s power hatch and hull and its influence on acoustic radiation, the project establishes a mathematical model to be effectively used for active vibration control, researches a controller with fast response and strong robustness, solve the problem in USV’s vibration reduced system that low frequency transfer rate and high frequency attenuation cannot have both ways and achieves composite functions for isolating direct perturbation of surface vibration and power hatch. The effectiveness of the control method has been verified by controlling the experiment, and provides the theory basis and experiment support for designing and manufacturing the damping and noise reducing system of USV.
本项目围绕海洋强国战略中国家安全和国防需求对无人艇在执行巡逻警戒、探雷、探潜、信息对抗、火力打击、情报侦察、海战场信息支援等多种作业任务中迫切需要解决的线谱振动问题,围绕基于动刚度设计的隔振系统动力学行为优化机理和无人艇未知、时变、强线谱振动的自适应主动控制两个科学问题,以项目团队前期精海系列水面机器人、超低频主动减振系统等研究成果为基础,研究基于非线性复刚度及电磁作动的无人艇减振降噪系统,通过阐明无人艇无人艇动力舱与艇体的耦合振动机理及其对声辐射的影响研究,建立可有效用于振动主动控制的数学模型,研究具有快速响应、强鲁棒性的控制器,解决无人艇减振系统中低频传递率与高频衰减率不可兼得的问题,实现隔离海面振动和动力舱等直接扰动的复合功能,并通过控制实验验证控制方法的有效性,为无人艇减振降噪系统的设计及制造提供理论依据及实验支撑。
本项目围绕海洋强国战略中国家安全和国防需求对无人艇在执行巡逻警戒、探雷、探潜、信息对抗、火力打击、情报侦察、海战场信息支援等多种作业任务中迫切需要解决的线谱振动问题,围绕基于动刚度设计的隔振系统动力学行为优化机理和无人艇未知、时变、强线谱振动的自适应主动控制两个科学问题,针对水面无人艇的声隐身需求,综合考虑无人艇中减振降噪系统体积限制,以降低水面无人艇动力装置振动声辐射、提高其声隐身等级为目标,通过研究水面无人艇动力舱与艇体的耦合振动机理及其对声辐射的影响,建立水面无人艇在不同巡航速度下的振动模型及振源特性分析,探究不同参数下对隔振系统的影响;设计未知、时变、强线谱振动的自适应主动控制方法,研制基于非线性复刚度生成装置和电磁作动的无人艇用主动减振系统样机及试验验证,达到无人艇振动声辐射能量的主被动耗散的目的, 提高无人艇在军事用途中的生存力和战斗力。该项目研究成果可用于为无人机、无人艇等平台提供减振降噪功能等,适应不同工况下,保障系统稳定运行,提高系统的可靠度、准确性,满足未来无人系统的发展趋势。项目相关研究成果在 IEEE/ASME Transactions on Mechatronics,IEEE Transactions on Industrial Informatics,中国科学:技术科学,Smart Materials and Structures 等机构学高水平期刊发表论文 23 篇;相关授权专利 16 项;相关成果获2019年上海市科学技术一等奖1项、2021 国家科技进步奖二等奖 1 项; 彭艳当选欧洲自然科学院当选 2021 年欧洲自然科学院院士。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
宽弦高速跨音风扇颤振特性研究
多源数据驱动CNN-GRU模型的公交客流量分类预测
p53磷酸化位点S15和S392在非小细胞肺癌重构p53功能的作用及萘甲酰亚胺类化合物的干预机制研究
建筑结构负刚度减振控制研究
基于负刚度-阻尼控制系统的结构减振控制研究
涡轮螺旋桨飞机相同步主动降噪减振机理及自适应控制研究
具有负泊松比特性的智能磁流变复合结构与减振降噪机理