高维流体动力学中若干数学模型的小波数值方法研究

基本信息
批准号:19971020
项目类别:面上项目
资助金额:9.00
负责人:吴勃英
学科分类:
依托单位:哈尔滨工业大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:崔明根,张池平,张池平,施云慧,张钦礼,郭琦,王勇
关键词:
高维流体动力学小波数值方法数学模型
结项摘要

In this paper, using the special space structure of reproducing kernel space, we.establish multi-resolution analysis of differential operator spline and construct the desirable basis of the space with reproducing kernel scale function. At the same time, the decomposition and reconstruction formulae of the functions in the space are established. Combining reproducing.kernel scale function with finite difference method, we give the numerical method that can solve Euler equations. If we adopt the reproducing kernel scale function that has higher regularity, then.the numerical method will has higher precision in the process of solving equations. Numerical tests show that this method has high resolution in shockwave problem and its stability is good enough that can eliminate the phenomena of non-physics oscillation. The computation can be simplified because the epresenting coefficient matrix of the.differential operator under the wavelet basis is quasi-diagonal. Making use of this feature, we can give the wavelet explicit discrete scheme of heat-conduction equation and can make the scheme be suitable for the problem with singular solution by adjusting the magnitude of scale due to the local.properties of wavelet. Error estimate formula and numerical test show that this scheme has higher precision. Furthermore, we give the wavelet interpolation method to solve multidimensional incompressible time-dependent N-S equations of viscous fluid field. We also give the domain.decomposition adaptive algorithm with wavelet method to trace shockwave, which uses stable coupling scheme to process interior boundary and ensures coupling stability of the whole scheme. The pesedospectral-multiwavelet-Galerkin method of the advection-diffusion equations is presented. Numerical test show that this method can process the general boundary conditions and combine the finite difference method with wavelet analysis in the numerical simulation of fluid equations, which can trace the development of the solution better and bring the vantage in the computation and locally oddness problem.

对高维流体动力学中若干数学模型,构造与其相容的高维小波及多分辩分析,寻找处理奇性和线化非线性的途径,使给出的小波数值求解方法能高分辩地捕捉激波处理奇性,达到稳定性好、精度高、计算量小、内存少、适于微机运算的特点,并对其做数值分析系统研究,给出具有较高概括性和应用价值的成果。这是创新工作,其优势是传统数值方法无法比拟的。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

DOI:10.11999/JEIT150995
发表时间:2016
2

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

DOI:10.13465/j.cnki.jvs.2020.09.026
发表时间:2020
3

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015
4

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
5

钢筋混凝土带翼缘剪力墙破坏机理研究

钢筋混凝土带翼缘剪力墙破坏机理研究

DOI:10.15986/j.1006-7930.2017.06.014
发表时间:2017

吴勃英的其他基金

批准号:11271100
批准年份:2012
资助金额:40.00
项目类别:面上项目
批准号:11726011
批准年份:2017
资助金额:10.00
项目类别:数学天元基金项目
批准号:19501010
批准年份:1995
资助金额:3.20
项目类别:青年科学基金项目

相似国自然基金

1

高维小波和平衡多小波的构造及其应用

批准号:10961001
批准年份:2009
负责人:黄永东
学科分类:A0205
资助金额:19.00
项目类别:地区科学基金项目
2

高维小波非线性逼近

批准号:10371122
批准年份:2003
负责人:许跃生
学科分类:A0205
资助金额:13.00
项目类别:面上项目
3

高维小波基构造及其应用的研究

批准号:60572113
批准年份:2005
负责人:杨德运
学科分类:F0111
资助金额:20.00
项目类别:面上项目
4

流体动力学领域中若干具有奇异性的数学模型

批准号:11271153
批准年份:2012
负责人:袁洪君
学科分类:A0306
资助金额:50.00
项目类别:面上项目