Hydrogen sulfide and carbon dioxide which are common non-hydrocarbon gas in carbonate reservior may produce chemical reaction with the main hydration products of cement such as calcium hydroxide crystal, hydrated calcium silicate gel and so on , under oil-gas well condition of high temperature and high pressure. The micro structure of cement is destroyed and the breakthrough channel path is formed gradually, which seriously affects the life of oil-gas well and safety production. This project starts with analyzing comparatively stability between calcium hydroxide crystal and hydrated calcium silicate gel. With laboratory simulation experiments and several modern advanced analyzing and testing instruments, such as environmental scanning electron microscopy, thermo gravimetric analysis, energy spectrum analysis, X-ray diffraction analysis, mercury injection technology and so on, chemical stability and structure stability of cement are investigated in hydrogen sulfide and carbon dioxide, to reveal the independent corrosion mechanism and combined corrosion mechanism of hydrogen sulfide and carbon dioxide. Through the research of the project, the influence factor of corroding cement is ascertained, and the corresponding chemical kinetic model and calculation model of corrosion depth are established. Based on thorough understanding the corrosion mechanism, anti-corrosion measurement is illustrated, which provides a scientific foundation to resolve the challenge that acid gas corrodes the cement. At last a new anti-corrosion additive is created, and a novel method of preventing and controlling corrosion on cement is set up, then a scheme of anti-corrosion and anti-migration is brought forward for acid gas field.
H2S和CO2是碳酸盐岩油气藏常见的酸性气体,在高温高压条件下,H2S和CO2气体将与固井水泥石的主要水化产物(如:羟钙结晶体、水化硅酸钙凝胶等)发生化学反应,破坏其结构并形成窜流通道,严重威胁油气井的寿命和安全。本项目从分析羟钙结晶体和水化硅酸钙凝胶在酸性气体中的化学和结构稳定性入手,利用腐蚀模拟实验系统和多种现代分析手段(如:扫描电镜、热重、能谱、X射线衍射、压汞、三轴应力等),研究固井水泥石在H2S和CO2环境中性能劣化机制,揭示H2S和CO2独立和协同腐蚀机理;探索H2S和CO2腐蚀程度与水泥石组分、温度、压力、酸性气体含量以及龄期等之间的相关性,建立酸性气体腐蚀动力学模型,创建腐蚀程度定量计算方法;在深入认识腐蚀机理的基础上,提出固井水泥石腐蚀控制机制,研发新型酸性气体防腐外加剂,并协同考虑控制腐蚀和抑制其在水泥石中窜流,建立具有防腐和防窜双功能固井水泥浆设计方法。
CO2和H2S是碳酸盐岩油气藏常见的酸性气体,在井下高温高压及一定湿度条件下,CO2和H2S气体将与固井水泥石的主要水化产物发生化学反应,生成无胶结性能的产物,破坏水泥环结构并形成窜流通道,严重威胁油气井的寿命和安全。如何防止CO2和H2S腐蚀水泥环已经成为国内外酸性油气田安全高效开发亟待解决的关键技术难题。针对这一关键难题,深入研究酸性气体对水泥石的腐蚀机理,建立了腐蚀程度定量计算方法,提出固井水泥石腐蚀控制方法,为酸性油气井安全固井提供理论基础。开展了不同温度压力影响下,CO2、H2S气体单一以及CO2/H2S混合气体对水泥石的腐蚀规律研究,得到了随温度升高,腐蚀程度减弱、随着分压增大,腐蚀程度增强等重要认识。利用电子扫描电镜、热重分析和X射线衍射仪等研究了油井水泥主要水化产物羟钙结晶体和水化硅酸钙凝胶在酸性气体中的化学和结构稳定性,分析了晶体结构、微观成份和化学性能变化规律,提出了酸性气体腐蚀油井水泥石深度的评价方法,研究了固井水泥石在CO2、H2S环境中性能劣化机制,揭示了CO2、H2S独立和协同腐蚀机理。根据水泥石受酸性气体腐蚀的特征,建立了酸性气体腐蚀水泥石动力学理论模型,提出了腐蚀深度和程度的定量预测方法。在实验研究基础上,提出了通过增加水泥石密实程度、降低渗透率、水泥水化产物表面成膜、改变易被腐蚀产物微观形貌,以及掺入火山灰质掺合料、减少水泥石中Ca(OH)2含量等提高水泥石抗酸性气体腐蚀的方法,形成固井水泥石腐蚀控制机制。基于CO2、H2S腐蚀水泥环机理以及水泥环腐蚀控制机制,开发了水泥石新型酸性气体防腐外加剂,并协同考虑控制腐蚀和抑制其在水泥石中窜流,研发了具有防腐和防窜双功能固井水泥浆体系。研究成果在伊朗雅达46口高酸性油井中应用,固井质量合格率100%,保证了该油田安全高效开发。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
地震作用下岩羊村滑坡稳定性与失稳机制研究
多源数据驱动CNN-GRU模型的公交客流量分类预测
混采地震数据高效高精度分离处理方法研究进展
含酸性气体的多相流对集输管材的诱导电化学腐蚀机理及预测研究
生物麦饭石颗粒协同PRB系统原位修复酸性矿井水机理研究
CCS咸水层封存中二氧化碳-硫酸盐-镁盐协同作用下油井水泥石的腐蚀机理
油气井固井水泥环的开裂机理、抗裂及自修复技术