高维非参数和半参数模型是数理统计中重要的又有应用前景的统计模型,这些模型的自适应(adaptive)统计推断仍然是富有挑战性的课题。我们将提出并建立这些模型中的自适应统计估计和检验的方法和理论。研究的主要模型为几种常见的非参数可加模型和半参数模型。在方法上,主要研究自适应的参数和非参数两步估计、无穷维讨厌参数的估计插入后的估计函数的纠偏技术以及对应的高维数据模型的降维方法。要达到的具体目是:1.在模型函数估计方面,得到的估计量有标准的收敛速度,并与数据的维数无关,即:如果要估计的函数是非参的,则构造的估计量有标准的非参收敛速度,如果本质上是参数的(虽然不知道其参数结构),则构造的估计量有标准的参数收敛速度,且如上参数和非参数估计的收敛速度与数据的维数无关; 2.在统计检验方面,构造的检验统计量有标准的(渐近)分布,即构造的检验统计量的(渐近)分布与(有限或无穷维)讨厌参数及其估计无关。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
非参数、半参数统计模型的理论与方法
若干半参数和非参数模型的自适应检验方法
稀疏高维半参数模型的稳健统计推断
面板计数数据模型的非参数和半参数统计推断